Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+4x+y=3\)
\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)
Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên
Ta có bảng
x + 1 | -7 | -1 | 1 | 7 |
y + 4 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -5 | -11 | 3 | -3 |
Vậy ,.............
\(xy+4x+y=3\)
\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)
\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)
\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có các trường hợp sau
\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\) \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\) \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)
Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)
2\(xy\) + 4\(x\) + y + 2 = 4 + 2
2\(x\).( y + 2) + (y + 2) = 6
(y + 2).(2\(x\) + 1) = 6
Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x+1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -\(\dfrac{7}{2}\) | -2 | -\(\dfrac{3}{2}\) | -1 | 0 | \(\dfrac{1}{2}\) | 1 | \(\dfrac{7}{2}\) |
y + 2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |
Theo bảng trên ta có các cặp (\(x\);y) nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; -4); (-1; -8); (0; 4); (1; 0)
6xy-2x+9y=68
=>\(2x\left(3y-1\right)+9y-3=65\)
=>\(2x\left(3y-1\right)+3\left(3y-1\right)=65\)
=>\(\left(2x+3\right)\left(3y-1\right)=65\)(2)
x,y là các số nguyên
=>2x+3 lẻ và 3y-1 chia 3 dư 2 và 2x+3>=3 và 3y-1>=-1(1)
Từ (1) và (2) suy ra \(\left(2x+3\right)\left(3y-1\right)=13\cdot5\)
=>\(\left\{{}\begin{matrix}2x+3=13\\3y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=10\\3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
a;\(xy+3x-y=8\)
\(\Rightarrow x\left(y+3\right)-\left(y+3\right)=8-3\)
\(\Rightarrow\left(x-1\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng
x-1 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 2 | -8 | -2 | -4 |
Vậy..............................
b,\(2xy-4x+y=8\)
\(\Rightarrow x\left(2y-4\right)+y=8\)
\(\Rightarrow2x\left(2y-4\right)+\left(2y-4\right)=8-4\)
\(\Rightarrow\left(2x+1\right)\left(2y-4\right)=4\)
\(\Rightarrow\left(2x+1\right);\left(2y-4\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Xét bảng
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
2y-4 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 0 | -1 | 1/2 | -3/2 | 3/2 | -5/2 |
y | 4 | 0 | 3 | 1 | 5/2 | 3/2 |
Vậy.....................................
=>3y(2x+1)-10x-5=7
=>(2x+1)(3y-5)=7
=>\(\left(2x+1;3y-5\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)(Vì x,y là số nguyên)
=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(3;2\right)\right\}\)
\(x^2-xy+y+1=0\)
\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)
\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)
\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 |
y | 1 | 3 | 3 | 1 |
bảng mình xét nhầm nhé phải là như này :
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | -2 | 2 | -1 | 1 |
x | 2 | 0 | 3 | -1 |
y | 5 | -1 | 5 | 1 |
Ta có: \(6xy+4x+15y+18=0\\ \Leftrightarrow\left(6xy+15y\right)+\left(4x+18\right)=0\\ \Leftrightarrow3y\left(2x+5\right)+2\left(2x+6\right)=0\Leftrightarrow3y\left(2x+5\right)+2\left(2x+5\right)+2=0\\ \Leftrightarrow\left(2x+5\right)\left(3y+2\right)=-2\)
Vì \(x,y\inℤ\) nên \(2x+5\inℤ;3y+2\inℤ\)
\(\Rightarrow\left(2x+5;3y+2\right)\inƯ\left(-2\right)\\\Rightarrow\left(2x+5;3y+2\right)\in \left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
\(\Rightarrow\left(x;y\right)\in\left\{\left(\dfrac{8}{11};-\dfrac{1}{11}\right);\left(\dfrac{1}{11};\dfrac{4}{11}\right);\left(-\dfrac{8}{11};\dfrac{1}{11}\right);\left(-\dfrac{1}{11};-\dfrac{4}{11}\right)\right\}\)(Loại)
Vậy không có nghiệm \(x,y\inℤ\)