Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^4a+cos^4a=\dfrac{5}{8}\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a=\dfrac{5}{8}\)
\(\Leftrightarrow1-2sin^2a\left(1-sin^2a\right)=\dfrac{5}{8}\)
\(\Leftrightarrow2sin^4a-2sin^2a+\dfrac{3}{8}=0\Rightarrow\left[{}\begin{matrix}sin^2a=\dfrac{3}{4}\\sin^2a=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sina=\dfrac{\sqrt{3}}{2}\\sina=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=150^0\\a=120^0\end{matrix}\right.\)
Vì hình bình hành ABCD có tâm I => I là trung điểm của AC và BC
Vì I là trung điểm AC
=> \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}\\y_I=\dfrac{y_A+y_C}{2}\end{matrix}\right.\)
=> xA = -2; yA = 5 => A(-2; 5)
Tương tự ta có D(7; 1)
\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{AC}-\overrightarrow{AB}-\overrightarrow{BD}\)
\(\Rightarrow2\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{BD}\Rightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\left(5;-\frac{7}{2}\right)\)
Áp dụng quy tắc hình bình hành ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AD}=\widehat{AC}\\\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}\end{matrix}\right.\)
Từ hệ trên suy ra:
\(\overrightarrow{2AB}=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\left(\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)
\(\Leftrightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\frac{1}{2}\left[7-\left(-3\right);-3-4\right]=\left(5;\frac{-7}{2}\right)\)
A là giao điểm AB và AD nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-2y+3=0\\2x+y-4=0\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)
Đường thẳng AD nhận \(\left(2;1\right)\) là 1 vtpt
Do B thuộc AB nên tọa độ B có dạng \(B\left(2b-3;b\right)\) \(\Rightarrow\overrightarrow{CB}=\left(2b-7;b-1\right)\)
\(BC//AD\Leftrightarrow2\left(2b-7\right)+1\left(b-1\right)=0\Rightarrow b=3\)
\(\Rightarrow B\left(3;3\right)\) \(\Rightarrow\overrightarrow{BC}=\left(1;-2\right)\)
Mà \(\overrightarrow{BC}=\overrightarrow{AD}\Rightarrow D\left(2;0\right)\)
Đáp án B
=> Đường thẳng AB có pt là: x- y – 5= 0.
Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).
Ta có:
Vậy C( 1 ; -1) và C( -2 ; 10)
$ABCD$ là hình chữ nhật thì $AC=BD$ chứ bạn sao độ dài lại khác nhau được? Bạn xem lại đề.