K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

NV
21 tháng 11 2021

\(AH=\dfrac{2S_{ABC}}{BC}=2\sqrt{5}\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{5}\)

\(\Rightarrow BH=\dfrac{1}{3}BC\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{BH}=\dfrac{1}{3}\overrightarrow{BC}\\\overrightarrow{BH}=-\dfrac{1}{3}\overrightarrow{BC}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}H\left(1;1\right)\\H\left(3;-3\right)\end{matrix}\right.\) (sử dụng công thức điểm chia đoạn thẳng theo tỉ lệ)

21 tháng 11 2021

em cảm ơn ạ

 

NV
13 tháng 5 2021

Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)

Độ dài trục lớn: \(2a=10\)

14 tháng 4 2017

Đáp án B

Gọi hình bình hành là ABCD

d:x+ y-1 = 0, : 3x – y+ 5= 0  .

Không làm mất tính tổng quát giả sử

 

Ta có :  I(3;3)  là tâm hình bình hành nên C(7;4)  

=> Đường thẳng ACcó pt là: x- 4y + 9= 0.

Do  => Đường thẳng BC đi qua điểm C và có vtpt  có pt là: 3x – y- 17= 0.

Khi đó :

Ta có:

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Câu 1: Chưa đủ dữ kiện để làm. Bạn xem lại đề. 

Câu 2: Gọi tọa độ điểm H(a,b)

Ta có: \(\overrightarrow{AH}=(a-3; b-2); \overrightarrow{BC}=(1;8); \overrightarrow{BH}=(a-4; b+1); \overrightarrow{AC}=(2; 5)\)

Vì H là trực tâm tam giác ABC nên:

\(\left\{\begin{matrix} \overrightarrow{AH}.\overrightarrow{BC}=0\\ \overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a-3+8(b-2)=0\\ 2(a-4)+5(b+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+8b=19\\ 2a+5b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-71}{11}\\ b=\frac{35}{11}\end{matrix}\right.\)

24 tháng 11 2019

Đáp án A

Ta có 

A thuộc ∆1 nên A( a; a+ 1).

P( 2;1) là trung điểm của đoạn AB nên B( 4-a; 1-a).

Mặt khác:

Đường thẳng AP có VTPT ( 4;-1) và qua P(2;1) nên có phương trình:

4x – y- 7 = 0

NV
7 tháng 10 2019

Do O là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_O=\frac{x_A+x_C}{2}\\y_O=\frac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=-x_A=-3\\y_C=-y_A=-1\end{matrix}\right.\)

Tương tự: \(\left\{{}\begin{matrix}x_D=-x_B=-1\\y_D=-y_B=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}C\left(-3;-1\right)\\D\left(-1;-2\right)\end{matrix}\right.\)

b/ Ta có \(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;2\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-3\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-5=0\)

\(\overrightarrow{DA}=\left(4;3\right)\Rightarrow\) đường thẳng AD nhận \(\overrightarrow{n}=\left(3;-4\right)\) là 1 vtpt

Phương trình AD:

\(3\left(x-3\right)-4\left(y-1\right)=0\Rightarrow3x-4y-5=0\)

Hai cạnh còn lại bạn tự viết tương tự