K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021
a³-b²-b=b³-c²-c=c³-a²-a =a^3 +a^2+a=b^3+b2+b=c3+c2+c =1/3 Giải ra ta được a=b=c=0.2530765865
17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

7 tháng 8 2017
các bạn nhanh nhé chiều nay mình học rồi
NM
1 tháng 11 2021

1. ta có 

\(\hept{\begin{cases}a+b=15\times2=30\\b+c=7\times2=14\\a+c=11\times2=22\end{cases}\Rightarrow2\left(a+b+c\right)=30+14+22=66}\)

vậy \(a+b+c=33\Rightarrow\hept{\begin{cases}c=33-30=3\\a=33-14=19\\b=33-22=11\end{cases}}\)

câu hai tương tự bạn nhé

9 tháng 8 2023

Ta có:

\(\left(a-\dfrac{1}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\) (1)

Và: \(a+1=b+2=c+3\)

\(\Rightarrow a=b+2-1=b+1\)

Thay vào (1) ta có:
\(\left(b+1-\dfrac{1}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\)

\(\Rightarrow\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\) (2)

Mà: \(b+2=c+3\)

\(\Rightarrow c=b+2-3=b-1\) 

Thay vào (2) ta có:
\(\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(b-1-3\right)=0\)

\(\Rightarrow\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(b-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}b=-\dfrac{2}{3}\\b=-\dfrac{1}{2}\\b=4\end{matrix}\right.\)

TH1 khi b=\(-\dfrac{2}{3}\)

\(\Rightarrow a=b+1=-\dfrac{2}{3}+1=\dfrac{1}{3}\)

\(\Rightarrow c=b-1=-\dfrac{2}{3}-1=-\dfrac{5}{3}\)

TH2 khi \(b=-\dfrac{1}{2}\)

\(\Rightarrow a=b+1=-\dfrac{1}{2}+1=\dfrac{1}{2}\)

\(\Rightarrow c=b-1=-\dfrac{1}{2}-1=-\dfrac{3}{2}\)

TH3 khi \(b=4\)

\(\Rightarrow a=b+1=4+1=5\)

\(\Rightarrow c=b-1=4-1=3\)

Vậy: ...

30 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{a}{c}=\dfrac{1}{2}\Rightarrow\dfrac{a}{1}=\dfrac{c}{2}\\ \Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)

Áp dụng tcdtsnb:

\(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{99}{99}=1\\ \Rightarrow\left\{{}\begin{matrix}a^3=8\\b^3=27\\c^3=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

18 tháng 12 2016

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)

Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)

Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)

\(\Rightarrow a+b+c+1=3a\)

\(\Rightarrow\frac{1}{2}+1=3a\)

\(\Rightarrow3a=\frac{3}{2}\)

\(\Rightarrow a=\frac{1}{2}\)

Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)

\(\Rightarrow a+b+c+2=3b\)

\(\Rightarrow\frac{1}{2}+2=3b\)

\(\Rightarrow\frac{5}{2}=3b\)

\(\Rightarrow b=\frac{5}{6}\)

Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)

\(\Rightarrow a+b+c-3=3c\)

\(\Rightarrow\frac{1}{2}-3=3c\)

\(\Rightarrow\frac{-5}{2}=3c\)

\(\Rightarrow c=\frac{-5}{6}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)

18 tháng 12 2016

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)

\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)

\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)

\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)

\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)