Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
1. ta có
\(\hept{\begin{cases}a+b=15\times2=30\\b+c=7\times2=14\\a+c=11\times2=22\end{cases}\Rightarrow2\left(a+b+c\right)=30+14+22=66}\)
vậy \(a+b+c=33\Rightarrow\hept{\begin{cases}c=33-30=3\\a=33-14=19\\b=33-22=11\end{cases}}\)
câu hai tương tự bạn nhé
Ta có:
\(\left(a-\dfrac{1}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\) (1)
Và: \(a+1=b+2=c+3\)
\(\Rightarrow a=b+2-1=b+1\)
Thay vào (1) ta có:
\(\left(b+1-\dfrac{1}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\)
\(\Rightarrow\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\) (2)
Mà: \(b+2=c+3\)
\(\Rightarrow c=b+2-3=b-1\)
Thay vào (2) ta có:
\(\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(b-1-3\right)=0\)
\(\Rightarrow\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(b-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-\dfrac{2}{3}\\b=-\dfrac{1}{2}\\b=4\end{matrix}\right.\)
TH1 khi b=\(-\dfrac{2}{3}\)
\(\Rightarrow a=b+1=-\dfrac{2}{3}+1=\dfrac{1}{3}\)
\(\Rightarrow c=b-1=-\dfrac{2}{3}-1=-\dfrac{5}{3}\)
TH2 khi \(b=-\dfrac{1}{2}\)
\(\Rightarrow a=b+1=-\dfrac{1}{2}+1=\dfrac{1}{2}\)
\(\Rightarrow c=b-1=-\dfrac{1}{2}-1=-\dfrac{3}{2}\)
TH3 khi \(b=4\)
\(\Rightarrow a=b+1=4+1=5\)
\(\Rightarrow c=b-1=4-1=3\)
Vậy: ...
\(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{a}{c}=\dfrac{1}{2}\Rightarrow\dfrac{a}{1}=\dfrac{c}{2}\\ \Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)
Áp dụng tcdtsnb:
\(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{99}{99}=1\\ \Rightarrow\left\{{}\begin{matrix}a^3=8\\b^3=27\\c^3=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)
Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)
Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)
\(\Rightarrow a+b+c+1=3a\)
\(\Rightarrow\frac{1}{2}+1=3a\)
\(\Rightarrow3a=\frac{3}{2}\)
\(\Rightarrow a=\frac{1}{2}\)
Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)
\(\Rightarrow a+b+c+2=3b\)
\(\Rightarrow\frac{1}{2}+2=3b\)
\(\Rightarrow\frac{5}{2}=3b\)
\(\Rightarrow b=\frac{5}{6}\)
Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)
\(\Rightarrow a+b+c-3=3c\)
\(\Rightarrow\frac{1}{2}-3=3c\)
\(\Rightarrow\frac{-5}{2}=3c\)
\(\Rightarrow c=\frac{-5}{6}\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)
\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)
\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)
\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)