K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

25 tháng 6 2015

\(\frac{a}{b}+\frac{c}{d}=\frac{a.c}{b.d}\)

\(vậy:\frac{ad+bc}{bd}=\frac{ac}{bd}\)

        =>\(ad+bd=ac\)

        =>\(ad=ac-bc\)

       =>\(ad=c\left(a-b\right)\)

       =>\(\frac{c}{d}=\frac{a}{a-b}\)

21 tháng 10 2015

\(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{a}{b}.\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a}{b}:\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\)

\(\Rightarrow1=\left(\frac{c}{d}\right)^2\Rightarrow\frac{c}{d}=1\text{ hoặc }\frac{c}{d}=-1\)

a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của day tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)

 

19 tháng 8 2021

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)