Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
\(A\left(x\right)=2x^2+bx+c\)
\(\Rightarrow A\left(0\right)=2.0^2+b.0+c\)
\(\Rightarrow A\left(0\right)=c\)
Mà \(A\left(0\right)=3\Rightarrow c=3\)
\(A\left(x\right)=2x^2+bx+c\)
\(\Rightarrow A\left(-1\right)=2.\left(-1\right)^2+b.\left(-1\right)+c\)
\(\Rightarrow A\left(-1\right)=2.1-b+c\)
\(\Rightarrow A\left(-1\right)=2-b+c\)
Mà \(A\left(-1\right)=0,c=3\)
\(\Rightarrow2-b+3=0\)
\(\Rightarrow5-b=0\)
\(\Rightarrow b=5-0\)
\(\Rightarrow b=5\)
Vậy \(c=3;b=5\)
ta có: A(0) = 2.0^2 + b.0+c = 3
= 0 + 0 + c = 3
=> c = 3
ta có: A(-1) = 2.(-1)^2 + b.(-1) + c = 0
= 2 -b + 3 = 0
2 -b = -3
b = 2 - - 3
b =5
KL: b = 5; c =3
\(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{a}{c}=\dfrac{1}{2}\Rightarrow\dfrac{a}{1}=\dfrac{c}{2}\\ \Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)
Áp dụng tcdtsnb:
\(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{99}{99}=1\\ \Rightarrow\left\{{}\begin{matrix}a^3=8\\b^3=27\\c^3=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)
Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
\(\Rightarrow A=4\)
2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)
Bài 2 :
a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy ...
b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy ...
Ta có:
\(\left(a-\dfrac{1}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\) (1)
Và: \(a+1=b+2=c+3\)
\(\Rightarrow a=b+2-1=b+1\)
Thay vào (1) ta có:
\(\left(b+1-\dfrac{1}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\)
\(\Rightarrow\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(c-3\right)=0\) (2)
Mà: \(b+2=c+3\)
\(\Rightarrow c=b+2-3=b-1\)
Thay vào (2) ta có:
\(\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(b-1-3\right)=0\)
\(\Rightarrow\left(b+\dfrac{2}{3}\right)\left(b+\dfrac{1}{2}\right)\left(b-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-\dfrac{2}{3}\\b=-\dfrac{1}{2}\\b=4\end{matrix}\right.\)
TH1 khi b=\(-\dfrac{2}{3}\)
\(\Rightarrow a=b+1=-\dfrac{2}{3}+1=\dfrac{1}{3}\)
\(\Rightarrow c=b-1=-\dfrac{2}{3}-1=-\dfrac{5}{3}\)
TH2 khi \(b=-\dfrac{1}{2}\)
\(\Rightarrow a=b+1=-\dfrac{1}{2}+1=\dfrac{1}{2}\)
\(\Rightarrow c=b-1=-\dfrac{1}{2}-1=-\dfrac{3}{2}\)
TH3 khi \(b=4\)
\(\Rightarrow a=b+1=4+1=5\)
\(\Rightarrow c=b-1=4-1=3\)
Vậy: ...