K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2021

\(n=1\Rightarrow1^1\ge1!\) đúng

Giả sử đúng với \(n=k\) hay \(k^k\ge k!\) 

Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)

Ta có:

\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)

5 tháng 10 2021

thầy cho em hỏi đáp án cuat thầy là của bài 

Sử dụng phương pháp quy nạp toán học, chứng minh: 

Với n nguyên dương, chứng minh n! ≤n

đúng không ạ em cảm ơn thầy 

 

29 tháng 11 2021

Với \(n=0\Rightarrow0-0+0-0+0-0=0⋮24\left(đúng\right)\)

Với \(n=1\Rightarrow1-3+6-7+5-2=0⋮24\left(đúng\right)\)

G/s \(n=k\Rightarrow\left(k^6-3k^5+6k^4-7k^3+5k^2-2k\right)⋮24\)

\(\Rightarrow k\left(k^5-3k^4+6k^3-7k^2+5k-2\right)⋮24\\ \Rightarrow k\left(k+1\right)\left(k^2+k+1\right)\left(k^2-k+2\right)⋮24\)

Với \(n=k+1\), ta cần cm \(\left[\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\right]⋮24\)

Ta có \(\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\)

\(=\left(k+1\right)\left[\left(k+1\right)^5-3\left(k+1\right)^4+6\left(k+1\right)^3-7\left(k+1\right)+5\left(k+1\right)-2\right]\\ =\left(k+1\right)\left(k+1-1\right)\left[\left(k+1\right)^2-\left(k+1\right)+1\right]\left[\left(k+1\right)^2-\left(k+1\right)+2\right]\\ =k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)\)

Mà theo GT quy nạp ta có \(k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)⋮24\)

Vậy ta được đpcm

 

30 tháng 6 2019

nhanh lên các bạn ơi

Dễ thấy dấu"=" xảy ra khi x=1

Giả sử bđt đúng với n=k>1 tức là

\(3^k\ge2k+1\)       (1)

Nhân cả 2 vế của (1) với 3 ta được

\(3^{k+1}\ge6k+3\Leftrightarrow3^{k+1}\ge3k+4+3k-1\)

Vì 3k-1>0

=>\(3^{k+1}\ge3\left(k+1\right)+1\)

Vậy bđt đúng với n=k+1

=> bđt được chứng minh

29 tháng 8 2021

Với n = 1 thì \(x^1\ge2.x^0=0\)

Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).

Ta phải chứng minh :

\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)

\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)

Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

Tổng của $n$ số hạng trong dãy là cấp số nhân $(u_n)$ với công bội $q$ là:

$S_n=u_1+u_2+....+u_n=u_1+u_1q+u_1q^2+...+u_1q^{n-1}$

$=u_1(1+q+q^2+....+q^{n-1})$

$qS_n=u_1(q+q^2+q^3+...+q^n)$

$\Rightarrow qS_n-S_n=u_1(q+q^2+q^3+...+q^n)-u_1(1+q+q^2+....+q^{n-1})$

$\Rightarrow S_n(q-1)=u_1(q^n-1)$

$\Rightarrow S_n=\frac{u_1(q^n-1)}{q-1}=\frac{u_1(1-q^n)}{1-q}$

Ta có đpcm.

28 tháng 3 2018

a)n = 1 ⇒ 31 = 3 < 8 = 8.1

n = 2 ⇒ 32 = 9 < 16 = 8.2

n = 3 ⇒ 33 = 27 > 24 = 8.3

n = 4 ⇒ 34 = 81 > 32 = 8.4

n = 5 ⇒ 35 = 243 > 40 = 8.5

b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3

- n = 3, bất đẳng thức đúng

- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:

3k > 8k

Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:

3(k + 1) > 8(k + 1)

Thật vậy, từ giả thiết quy nạp ta có:

3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k

k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8

Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)

Vậy bất đẳng thức đúng với mọi n ≥ 3

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left(n-1\right)\left(2n-1\right)\)

TH1: n=3k

\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)

mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)

nên A chia hết cho 6

TH2: n=3k+1

\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)

\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)

=>A chia hết cho 6

TH3: n=3k+2

\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)

\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)