Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left(n-1\right)\left(2n-1\right)\)
TH1: n=3k
\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)
mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)
nên A chia hết cho 6
TH2: n=3k+1
\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)
\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)
=>A chia hết cho 6
TH3: n=3k+2
\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)
\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)
Gọi \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\)
\(4A=1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\)
\(4A-A=\left(1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\right)-\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\right)\)
\(3A=\left(1-\frac{1}{4^n}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4^n}\right):3\) hay \(A=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
Vậy \(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R
\(n=1\Rightarrow1^1\ge1!\) đúng
Giả sử đúng với \(n=k\) hay \(k^k\ge k!\)
Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)
Ta có:
\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)
thầy cho em hỏi đáp án cuat thầy là của bài
Sử dụng phương pháp quy nạp toán học, chứng minh:
Với n nguyên dương, chứng minh n! ≤nn
đúng không ạ em cảm ơn thầy
nhanh lên các bạn ơi
Dễ thấy dấu"=" xảy ra khi x=1
Giả sử bđt đúng với n=k>1 tức là
\(3^k\ge2k+1\) (1)
Nhân cả 2 vế của (1) với 3 ta được
\(3^{k+1}\ge6k+3\Leftrightarrow3^{k+1}\ge3k+4+3k-1\)
Vì 3k-1>0
=>\(3^{k+1}\ge3\left(k+1\right)+1\)
Vậy bđt đúng với n=k+1
=> bđt được chứng minh