K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

ban co the so sanh bang cach quy dong mau hoac tu vi cac cach khac ko giai dc.

13 tháng 6 2023

\(\dfrac{97}{100}\)  và \(\dfrac{98}{99}\)

\(\dfrac{97}{100}=\dfrac{97\times99}{100\times99}=\dfrac{9603}{9900}\)

\(\dfrac{98}{99}=\dfrac{98\times100}{99\times100}=\dfrac{9800}{9900}\)

Vì: \(9603< 9800\)  nên => \(\dfrac{97}{100}< \dfrac{98}{99}\)

\(\dfrac{13}{17}\)  và \(\dfrac{131}{171}\)

\(\dfrac{13}{17}=\dfrac{13\times171}{17\times171}=\dfrac{2223}{2907}\)

\(\dfrac{131}{171}=\dfrac{131\times17}{171\times17}=\dfrac{2227}{2907}\)

Vì: \(2227>2223\)  nên: => \(\dfrac{13}{17}< \dfrac{131}{171}\)

\(\dfrac{51}{61}\)  và \(\dfrac{515}{616}\)

\(\dfrac{51}{61}=\dfrac{51\times616}{61\times616}=\dfrac{31416}{37576}\)

\(\dfrac{515}{616}=\dfrac{515\times61}{616\times61}=\dfrac{31415}{37576}\)

Vì: \(31416>31415\)  Nên => \(\dfrac{51}{61}>\dfrac{515}{616}\)

AH
Akai Haruma
Giáo viên
18 tháng 6

a/

$\frac{97}{100}< \frac{98}{100}< \frac{98}{99}$

c/

$\frac{131}{171}=1-\frac{40}{171}> 1-\frac{40}{170}=1-\frac{4}{17}=\frac{13}{17}$
d/

$\frac{51}{61}=1-\frac{10}{61}=1-\frac{100}{610}$

$\frac{515}{616}=1-\frac{101}{616}$

Xét hiệu:

$\frac{100}{610}-\frac{101}{616}=\frac{100.616-101.610}{610.616}$

$=\frac{100(610+6)-101.610}{610.616}$

$=\frac{600-610}{610.616}<0$

$\Rightarrow \frac{100}{610}< \frac{101}{616}$

$\Rightarrow 1-\frac{100}{610}> 1-\frac{101}{616}$

$\Rightarrow \frac{51}{61}> \frac{515}{616}$ 

4 tháng 8 2023

\(\dfrac{2}{15}=\dfrac{4}{30}>\dfrac{3}{20}\)

\(\Rightarrow\dfrac{-2}{15}=\dfrac{-4}{30}< \dfrac{3}{-20}\)

4 tháng 8 2023

\(-\dfrac{2}{15}=-\dfrac{8}{60}\)

\(\dfrac{3}{-20}=-\dfrac{3}{20}=-\dfrac{9}{60}< -\dfrac{8}{60}\)

\(\Rightarrow\dfrac{3}{-20}< -\dfrac{2}{15}\)

7 tháng 7 2021

Ta xét: \(\dfrac{1}{100} + \dfrac{1}{101} + \dfrac{1}{102}...+ \dfrac{1}{200}\)

\(\dfrac{1}{100} > \dfrac{1}{200}\)

\(\dfrac{1}{101}>\dfrac{1}{200}\)

.

.

.

\(\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow\)\(\dfrac{1}{100} + \dfrac{1}{101} + \dfrac{1}{102} +...+\dfrac{1}{200}\)(có 101 phân số) > \(100.\dfrac{1}{200} = \dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:
\(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{101}{200}>\frac{100}{200}=0,5>0,499\)

17 tháng 9 2017

99/100< 100/101

21 tháng 9 2023

Ta có:

\(M=\dfrac{100^{100}+1}{100^{99}+1}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)

\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\) 

\(N=\dfrac{100^{101}+1}{100^{100}+1}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)

\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)

Mà: \(100^{101}>100^{100}\)

\(\Rightarrow100^{101}+100>100^{100}+100\)

\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)

\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)

\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)

\(\Rightarrow N< M\)

6 tháng 9 2017

 ta có :

\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)

mà \(5^{2017}>5^{2016}\)

\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)

\(\Rightarrow\)\(5^{2017}>25^{1008}\)

6 tháng 9 2017

có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)

mà \(=25^{1008}\times5\)\(25^{1008}\)

nên \(5^{2017}>25^{1008}\)

4 tháng 8 2023

a, \(\dfrac{515}{605}\) < \(\dfrac{515+1}{605+1}\) = \(\dfrac{516}{606}\) vậy \(\dfrac{515}{605}< \dfrac{516}{606}\)

b, - \(\dfrac{2}{3}\) và \(\dfrac{3}{-2}\)  Vì   - \(\dfrac{2}{3}\) > -1;     \(\dfrac{3}{-2}\) < - 1  Vậy - \(\dfrac{2}{3}\) >  \(\dfrac{3}{-2}\)

c, - \(\dfrac{17}{16}\) và \(\dfrac{30}{7}\) vì - \(\dfrac{17}{16}\) < 0 <  \(\dfrac{30}{7}\)  nên - \(\dfrac{17}{16}\) < \(\dfrac{30}{7}\)

d, - \(\dfrac{16}{279}\) và  - \(\dfrac{16}{217}\) vì \(\dfrac{16}{279}\) < \(\dfrac{16}{217}\) nên - \(\dfrac{16}{279}\) > - \(\dfrac{16}{217}\) 

 

 

 

4 tháng 8 2023

Để so sánh các số hữu tỉ, chúng ta có thể chuyển về cùng một mẫu số và so sánh tử số.

So sánh 515/605 và 516/606:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 1001 (là tích của 11 và 91).
515/605 = (515 * 1001) / (605 * 1001) = 515515 / 605605
516/606 = (516 * 1001) / (606 * 1001) = 516516 / 606606

Vì 515515 < 516516, và 605605 < 606606, nên ta có: 515/605 < 516/606.

So sánh -2/3 và 3/-2:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với -1.
-2/3 = (-2 * -1) / (3 * -1) = 2 / -3
3/-2 = (3 * -1) / (-2 * -1) = -3 / 2

Vì 2 > -3, và -3 < 2, nên ta có: -2/3 > 3/-2.

So sánh -17/16 và 30/7:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 112 (là tích của 16 và 7).
-17/16 = (-17 * 112) / (16 * 112) = -1904 / 1792
30/7 = (30 * 112) / (7 * 112) = 3360 / 784

Vì -1904 < 3360, và 1792 > 784, nên ta có: -17/16 < 30/7.

So sánh -16/279 và -16/217:
Để chuyển về cùng mẫu số, ta không cần thay đổi gì vì cả hai phân số đã có cùng mẫu số.
-16/279 và -16/217 có cùng tử số và mẫu số, nên chúng bằng nhau: -16/279 = -16/217.

Tóm lại:

515/605 < 516/606
-2/3 > 3/-2
-17/16 < 30/7
-16/279 = -16/217