K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

x+y+xy=3

<=>(x+xy)+y=3

<=>x(y+1)+y+1=3+1=4

<=>x(y+1)+(y+1)=4

<=>(x+1)(y+1)=4

lập bảng,tìm  Ư(4);

đáp án:6 cặp (x;y)

2 tháng 3 2016

x+y+xy=3

<=>x(y+1)+(y+1)=4

<=>(x+1)(y+1)=4

Vì x,y thuộc Z nên ta có:

x+114-1-42-2
y+141-4-12-2
x03-2-51-3
y30-5-21-3
6 tháng 1 2016

Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4

Vì x,y nguyên nên (x+1) và (y+1) nguyên

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2

Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

 Ta có 

x+y+xy=3 
<=> (x+xy) + (y+1) = 4 
<=> x(y+1) + (y+1) = 4 
<=> (x+1)(y+1) = 4 

Vì x,y nguyên nên (x+1) và (y+1) nguyên 

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2 

Khi đó ta có: 
{x+1= -1 <=> {x= -2 
{y+1= -4........{y= -5 
hoặc 
{x+1= -4 <=> {x= -5 
{y+1= -1........{y= -2 
hoặc 
{x+1= -2 <=> {x= -3 
{y+1= -2........{y= -3 
hoặc 
{x+1= 4 <=> {x= 3 
{y+1= 1........{y= 0 
hoặc 
{x+1= 1 <=> {x= 0 
{y+1= 4........{y= 3 
hoặc 
{x+1= 2 <=> {x= 1 
{y+1= 2........{y= 1 

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

7 tháng 3 2018

x=0 , y=1

7 tháng 3 2018

cho mình xin cách giải

15 tháng 2 2017

x - y + 2xy = 3

2(x - y + 2xy) = 6

2x - 2y + 4xy = 6

2x - 2y(1 + 2x) = 6

1 + 2x - 2y(1 + 2x) = 7

(2x + 1)(1 - 2y) = 7

=> 2x + 1 và 1 - 2y thuộc ước của 7

=> Ư(7) = { - 7; - 1; 1; 7 }

2x + 1- 7 - 1 1   7   
1 - 2y- 1- 771
x- 4- 103
y14- 30

Vậy ( x;y ) = { ( -4;-1 ); ( -1;4 ); (0;-3); (3;0) }

25 tháng 12 2016

Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên

Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm

TH1: (2x-3)2=0 và |y-2|=1

\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)

Ta không xét đến |y-2|=1 nữa!

TH2: (2x-3)2=1 và |y-2|=0

  • \(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
  • \(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)

Vậy có 2 cặp x;y thỏa mãn là .........................

25 tháng 12 2016

\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)

\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)

Với x=1,2=>có y=2

với 1,3 không có x thỏa mãn

KL:

(xy)=(1,2); (2,2)

26 tháng 4 2019

vì y>0 => 3- I2x-3I >=0

=> I2x-3I<=3

=>\(\orbr{\begin{cases}2x-3< =3\\2x-3>=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x< =3\\x>=0\end{cases}}\)

nếu x=0 => y=0 (TMĐK)

nếu x=1 =>y=\(\sqrt{2}\)(KTMĐK)

nếu x=2=>y=\(\sqrt{2}\)(KTMĐK)

nếu x=3=>y=0 (TMĐK)

v các cặp số nguyên TM pt đã cho là (x,y): (0,0);(3,0)

8 tháng 12 2016

x=\(\frac{y}{x-1}\)∈Z

⇒y⋮(y−1)⇒y⋮(y−1)

⇒y=0∨y−1=±1⇒y=0∨y−1=±1

(x,y)∈{(0,0),(2,2)}

28 tháng 12 2015

Ta có:

x+y+xy=3

<=> (x+xy) + (y+1) = 4

<=> x(y+1) + (y+1) = 4

<=> (x+1)(y+1) = 4  

Vì x,y nguyên nên (x+1) và (y+1) nguyên  

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2  

Khi đó ta có:

{x+1= -1 <=> {x= -2

{y+1= -4........{y= -5

hoặc

{x+1= -4 <=> {x= -5

{y+1= -1........{y= -2

hoặc

{x+1= -2 <=> {x= -3

{y+1= -2........{y= -3

hoặc

{x+1= 4 <=> {x= 3

{y+1= 1........{y= 0

hoặc

{x+1= 1 <=> {x= 0

{y+1= 4........{y= 3

hoặc

{x+1= 2 <=> {x= 1

{y+1= 2........{y= 1

 Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

****