Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=2009\)
\(\Rightarrow x-1=2008\left(1\right)\)
Thay (1) vào A ta được:
\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)
\(A=x^{2009}-\left(x-1\right)x^{2008}-...-\left(x-1\right)x+1\)
\(A=x^{2009}-x^{2009}+x^{2008}-...-x^2-x+1\)
\(A=-x+1\)
\(A=-2009+1\)
\(A=-2008\)
Lộn đề
\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)1
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
x^4 + 2008x^2 + 2007x + 2008
\(=x^4+x^2+2007x^2+2007x+2007+1\)
\(=x^4+x^2+1+2007\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
gọi đa thức phân tích là (x2+ax+b)(x2+cx+d)
(x2+ax+b)(x2+cx+d)=x4+(c+a)x3+x2(d+ac+b)+x(ad+bc)+bd
đồng nhất hệ số ta có a+c = 0
d+b+ac=2009
ad+bc = 2008
bd = 2009
=> a = 1 ; b =1 ; c = -1 ; d =2009
vậy đa thức phân tích là (x^2+x+1)(x^2-x+2009)
bạn phân tích ra xem có đúng ko nha
x^4+2008x^2+2007x+2008
=x^4+2008x^2+2008x-x+2008
=(x^4-x)+(2008x^2+2008x+2008)
=x(x^3-1)+2008(x^2+x+1)
=x(x-1)(x^2+x+1)+2008(x^2+x+1)
=(x^2+x+1)(x^2-x+2008)
x4+2008x2+2007x+2008
<=> x4-x+2008x2+2008x+2008
<=> x(x3-1)+2008(x2+x+1)
<=> x(x-1)(x2+x+1)+2008(x2+x+1)
<=> (x2+x+1)(x2-x+2008)
x=2009x=2009
⇒x−1=2008(1)⇒x−1=2008(1)
Thay (1) vào A ta được:
A=x^2009−2008x^2008−2008x^2007−...−2008x+1
A=x^2009−(x−1)x^2008−...−(x−1)x+1
A=x^2009−x^2009+x^2008−...−x^2−x+1
A=−x+1
A=−2009+1
A=−2008
\(x=2009\Leftrightarrow x-1=2008\\ \Leftrightarrow A=x^x-\left(x-1\right)x^{x-1}-\left(x-1\right)x^{x-2}-...-\left(x-1\right)x+1\\ \Leftrightarrow A=x^x-x^x+x^{x-1}-x^{x-1}+x^{x-2}-...-x^2-x+1\\ \Leftrightarrow A=1-x=1-2009=-2008\)