Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2009x=2009
⇒x−1=2008(1)⇒x−1=2008(1)
Thay (1) vào A ta được:
A=x^2009−2008x^2008−2008x^2007−...−2008x+1
A=x^2009−(x−1)x^2008−...−(x−1)x+1
A=x^2009−x^2009+x^2008−...−x^2−x+1
A=−x+1
A=−2009+1
A=−2008
\(x=2009\Leftrightarrow x-1=2008\\ \Leftrightarrow A=x^x-\left(x-1\right)x^{x-1}-\left(x-1\right)x^{x-2}-...-\left(x-1\right)x+1\\ \Leftrightarrow A=x^x-x^x+x^{x-1}-x^{x-1}+x^{x-2}-...-x^2-x+1\\ \Leftrightarrow A=1-x=1-2009=-2008\)
\(x=2009\)
\(\Rightarrow x-1=2008\left(1\right)\)
Thay (1) vào A ta được:
\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)
\(A=x^{2009}-\left(x-1\right)x^{2008}-...-\left(x-1\right)x+1\)
\(A=x^{2009}-x^{2009}+x^{2008}-...-x^2-x+1\)
\(A=-x+1\)
\(A=-2009+1\)
\(A=-2008\)
Lộn đề
\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)1
x^4+2008x^2+2007x+2008
=x^4+2008x^2+2008x+2008-x
=x(x^3-1)+2008(x^2+x+1)
=x(x-1)(x^2+x+1)+2008(x^2+x+1)
=(x^2+x+1)(x^2-x+2008)
x4+2008x2+2007x+2008
=(x4+x2+1)+(2007x2+2007x+2007)
=(x4+2x2+1-x2)+2007(x2+x+1)
=(x2+1)2-x2+2007(x2+x+1)
=(x2+1-x)(x2+1+x)+2007(x2+x+1)
=(x2+x+1)(x2+1-x+2007)=(x2+x+1)(x2-x+2008)
(x+2)(2008x-1)-(x+2)(2009x-1)=0 <=> (x+2)(2008x-1-2009x+1)=0 <=>-x(x+2)=0
=> x=0 hoặc x=-2
hình như để của bạn sai. mình tự sửa cho thích hợp. nếu k đúng thì liên hệ đê rmình làm lại nha
pt <=> (x^4-x)+(2009x^2+2009x+2009) = 0
<=> x.(x^3-1)+2009.(x^2+x+1) = 0
<=> x.(x-1).(x^2+x+1)+2009.(x^2+x+1) = 0
<=> (x^2+x+1).(x^2-x+2009) = 0
=> pt vô nghiệm ( vì x^2+x+1 và x^2-x+2009 đều >= 0 )
Tk mk nha
Trả lời lẹ đi 30p nữa thôi !