Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: m(n+p)-n(m-p)
=mn+mp-mn+np
=mp+np
= (m+n)p (đpcm)
b)m(n-p)-m(n+p)
=mn-mp-mn-mq
=-mp-mq=-mp+(-mq)
=-m(p+q) (đpcm)
a)Ta có
\(m^2+105^n+2^{105}=m^2+\left(...5\right)+2^{104}.2\)
\(m^2+\left(...5\right)+\left(...6\right).2\)
\(m^2+\left(...5\right)+\left(...2\right)\)
\(m^2+\left(...7\right)\)
Ta có
m2 luôn có tận cùng là 1;4;5;6;9
\(\Rightarrow m^2+\left(...7\right)\ne\left(...0\right)\)
=> m2+(...7) không chia hết cho 10
Hay \(m^2+105^n+2^{105}\)không chia hết cho 10
Câu b tương tự
a)
Giả sử: m.x = p suy ra n.x = q (phép nhân tử và mẫu cho cùng một số của cấp 1)
VP = \(\dfrac{m+p}{n+q}=\dfrac{m+mx}{n+nx}=\dfrac{m\left(1+x\right)}{n\left(1+x\right)}=\dfrac{m}{n}=\dfrac{p}{q}\)= VT
b)
Tương tự như trên:
VP = \(\dfrac{m-2p}{n-2q}=\dfrac{m-2mx}{n-2nx}=\dfrac{m\left(1-2x\right)}{n\left(1-2x\right)}=\dfrac{m}{n}\) = VT
c)
Mình nghĩ bạn ghi sai đề đó, nếu theo mình thì
Từ a và b đã chứng minh, ta có
\(\dfrac{p}{q}=\dfrac{m}{n}\)<=> \(\dfrac{m+p}{n+q}=\dfrac{m-2p}{n-2q}\) <=> \(\dfrac{m+p}{m-2p}=\dfrac{n+q}{n-2q}\)
a ) Ta có : m ( n + p ) - n ( m - p ) = mn + mp - mn + np
= mp + np = p ( m + n )
=> m ( n + p ) - n ( m - p ) = ( m + n ) p
b ) Ta có : m ( n - p ) - m ( n + q ) = mn - mp - mn - mq
= - mp - mq = - m ( p + q )
=> m ( n - p ) - m ( n + q ) = - m ( p + q )
< Tích nha , chắc đúng 100 % luôn đó >