K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

a)Ta có: m(n+p)-n(m-p)

=mn+mp-mn+np

=mp+np

=     (m+n)p       (đpcm)

b)m(n-p)-m(n+p)

=mn-mp-mn-mq

=-mp-mq=-mp+(-mq)

=-m(p+q)       (đpcm)    

26 tháng 1 2016

Đặt A=(m-n)(m-p)(m-q)(n-p)(n-q)(p-q)

Ta có: m,n,p,q là các số nguyên

=> theo nguyên lí Derichlet thì có ít nhất 2 số cùng số dư khi chia cho 3

=>hiệu của chúng chia hết cho 3

=>A chia hết cho 3                (1)

Giả sử trong 4 số trên đều không chia hết cho 2

=>hiệu 2 số bất kì đều chia hết cho 2

=>tích của chúng ít nhất chia hết cho 2.2=4

=>A chia hết cho 4

Giả sử trong 4 số đó có 3 số không chia hết cho 2

=>hiệu 2 số bất kì trong 3 số đó chia hết cho 2

=>tích của chúng chia hết cho 2.2=4

=>A chia hết cho 4

Giả sử trong 4 số đó có 2 số không chia hết cho 2

=>hiệu của chúng chia hết cho 2

Và còn lại 2 số chia hết cho 2

=>hiệu của chúng cũng chia hết cho 2

=>A chia hết cho 4

Giả sử trong 4 số có 3 số chia hết cho 2

=>hiệu 2 số bất kì trong 3 số đó chia hết cho 2

=> tích của chúng chia hết cho 2.2=4

=>A chia hết cho 4

Giả sử cả 4 số đều chia hết cho 2

=>có ít nhất 2 hiệu chia hết cho 2

=>tích của chúng chia hết cho 2

=>A chia hết cho 4

Vậy A luôn chia hết cho 4              (2)

Từ (1) và (2) và (3;4)=1

=>A chia hết cho 3.4=12

Vậy A chia hết cho 12(đpcm)

bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm

21 tháng 1 2017

đặt m/n=q/p=k =>...

13 tháng 8 2017

a)

Giả sử: m.x = p suy ra n.x = q (phép nhân tử và mẫu cho cùng một số của cấp 1)

VP = \(\dfrac{m+p}{n+q}=\dfrac{m+mx}{n+nx}=\dfrac{m\left(1+x\right)}{n\left(1+x\right)}=\dfrac{m}{n}=\dfrac{p}{q}\)= VT

b)

Tương tự như trên:

VP = \(\dfrac{m-2p}{n-2q}=\dfrac{m-2mx}{n-2nx}=\dfrac{m\left(1-2x\right)}{n\left(1-2x\right)}=\dfrac{m}{n}\) = VT

c)

Mình nghĩ bạn ghi sai đề đó, nếu theo mình thì

Từ a và b đã chứng minh, ta có

\(\dfrac{p}{q}=\dfrac{m}{n}\)<=> \(\dfrac{m+p}{n+q}=\dfrac{m-2p}{n-2q}\) <=> \(\dfrac{m+p}{m-2p}=\dfrac{n+q}{n-2q}\)

5 tháng 9 2019

Vì \(a< b< c< d< m< n\)

\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

5 tháng 9 2019

                                                             Bài giải

Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)

        \(c< d\text{ }\Rightarrow\text{ }2c< c+d\)

         \(m< n\text{ }\Rightarrow\text{ }2m< m+n\)

\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)

\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

27 tháng 1 2016

1.Giải pt:

(2x+4)*căn(x+8)=3x^2+7x+8

2.Cho đường tròn (O,R), đường kính AB cố định.Lấy P là 1 điểm nằm giữa B và O.Vẽ  góc vuông MPN(M,N thuộc đường tròn ;M,N khác A và B). I là trung điểm của MN

a) C/M: R^2=IO^2+IP^2

b) Gọi K là trung điểm của PO.Giả sử R=10cm,PO=8cm.Tính độ dài IK

Giải:

a) M = 1+ 3 + 32 + ... + 349

M = (1 + 3 + 32) + ... + (347 + 348 + 349)

M = 1 . (1 + 3 + 32) + ... + 347 . (1 + 3 + 32)

M = 1 . 13 + ... + 347 . 13

M = 13 . (1 + ... + 347)

Vì 13 \(⋮\) 13 nên suy ra 13 . (1 + ... + 347) \(⋮\) 13

Vậy M \(⋮\) 13.

b) M = 1 + 3 + 32 + ... + 349

=> 3M = 3 + 32 + 33 + ... + 350

3M - M = (3 + 32 + 33 + ... + 350) - (1 + 3 + 32 + ... + 349)

=> 2M = 350 - 1

=> M = \(\frac{3^{50}-1}{2}\)

Vậy M = \(\frac{3^{50}-1}{2}\)

26 tháng 3 2017

a)ta có:\(\frac{a}{b}=\frac{a.\left(b+m\right)}{b.\left(b+m\right)}=\frac{ab+am}{b^2+bm}\)

\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right)b}=\frac{ab+bm}{bm+b^2}\)

vì a<b =>am<bm=>ab+am<ab+bm

hay\(\frac{a}{b}< \frac{a+m}{b+m}\)

b)tương tự như phần a

20 tháng 8 2017

ta có

a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)

vì \(a+m< b+m\)

nên \(\frac{a+m}{b+m}< 1\)

b,Ta có    \(a+b>1\Leftrightarrow a+m>b+m\)

Vì \(a+m>b+m\)

nên \(\frac{a+m}{b+m}>1\)

27 tháng 1 2016

tich minh cho minh len thu 8 tren bang sep hang cai