Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5}{2.m}=\frac{1}{6}+\frac{n}{3}\) \(\left(m\ne0\right)\)
\(\frac{15}{6.m}=\frac{m}{6.m}+\frac{2.m.n}{6.m}\)
\(\frac{15}{6.m}=\frac{m+2mn}{6.m}\)
\(m+2mn=15\)
\(m\left(1+2n\right)=15\)
\(\Rightarrow m\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Với m = 1, 1 + 2n = 15 hay n = 7.
Với m = 3, 1 + 2n = 5 hay n = 2
Với m = 5, 1 + 2n = 2 hay n = 1
Với m = 15, 1 + 2n = 1 hay n = 0.
Vậy ta tìm được 4 cặp (m;n) thỏa mãn là: (1;7) , (3;2) , (5;1) và (15;0)
Câu b, c hoàn toàn tương tự.
Bài 1:
Vì n nguyên nên để A nhận giá trị nguyên thì :
\(n+3⋮n-5\\ \Leftrightarrow n-5+8⋮n-5\\ \Rightarrow8⋮n-5\\ \Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\\ \Rightarrow n\in\left\{4;6;3;7;1;9;-3;13\right\}\\ Vậy...\)
Bài 3;
Gọi \(UCLN_{\left(5n+1,20n+3\right)}=d\)
\(\Rightarrow\left\{{}\begin{matrix}5n+1⋮d\\20n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20n+4⋮d\\20n+3⋮d\end{matrix}\right.\\ \Rightarrow\left(20n+4\right)-\left(20n+3\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d\in\left\{-1;1\right\}\)
\(UCLN_{\left(5n+1,20n+3\right)}=1\\ \Rightarrow Phânsốđãchotốigiản\\ \RightarrowĐpcm\)
\(1.\)Để A nguyên thì n+3⋮n−5 (1)
Vì n-5⋮n-5 (2)
Từ (1) và (2) ⇒ n+3-n+5⋮n-5
⇒ 8⋮n-5
⇒ n-5 ∈ Ư(8) = \(\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
⇒ n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)
Vậy n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)thì A là số nguyên
Giải:
Ta có: \(\frac{m}{n}=\frac{p}{q}\Rightarrow\frac{m^2}{n^2}=\frac{p^2}{q^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{m^2}{n^2}=\frac{p^2}{q^2}=\frac{m^2+p^2}{n^2+q^2}\) (1)
\(\frac{m^2}{n^2}=\frac{m}{n}.\frac{p}{q}=\frac{mp}{nq}\) (2)
Từ (1) và (2) suy ra \(\frac{mp}{nq}=\frac{m^2+p^2}{n^2+q^2}\left(=\frac{m^2}{n^2}\right)\)
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)
~.~
M lớn hơn hay nhỏ hơn N vậy bạn ơi??
Nếu m > n thì A > B; m < n thì A < B nhé!!
đặt m/n=q/p=k =>...
a)
Giả sử: m.x = p suy ra n.x = q (phép nhân tử và mẫu cho cùng một số của cấp 1)
VP = \(\dfrac{m+p}{n+q}=\dfrac{m+mx}{n+nx}=\dfrac{m\left(1+x\right)}{n\left(1+x\right)}=\dfrac{m}{n}=\dfrac{p}{q}\)= VT
b)
Tương tự như trên:
VP = \(\dfrac{m-2p}{n-2q}=\dfrac{m-2mx}{n-2nx}=\dfrac{m\left(1-2x\right)}{n\left(1-2x\right)}=\dfrac{m}{n}\) = VT
c)
Mình nghĩ bạn ghi sai đề đó, nếu theo mình thì
Từ a và b đã chứng minh, ta có
\(\dfrac{p}{q}=\dfrac{m}{n}\)<=> \(\dfrac{m+p}{n+q}=\dfrac{m-2p}{n-2q}\) <=> \(\dfrac{m+p}{m-2p}=\dfrac{n+q}{n-2q}\)