Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Giả sử: m.x = p suy ra n.x = q (phép nhân tử và mẫu cho cùng một số của cấp 1)
VP = \(\dfrac{m+p}{n+q}=\dfrac{m+mx}{n+nx}=\dfrac{m\left(1+x\right)}{n\left(1+x\right)}=\dfrac{m}{n}=\dfrac{p}{q}\)= VT
b)
Tương tự như trên:
VP = \(\dfrac{m-2p}{n-2q}=\dfrac{m-2mx}{n-2nx}=\dfrac{m\left(1-2x\right)}{n\left(1-2x\right)}=\dfrac{m}{n}\) = VT
c)
Mình nghĩ bạn ghi sai đề đó, nếu theo mình thì
Từ a và b đã chứng minh, ta có
\(\dfrac{p}{q}=\dfrac{m}{n}\)<=> \(\dfrac{m+p}{n+q}=\dfrac{m-2p}{n-2q}\) <=> \(\dfrac{m+p}{m-2p}=\dfrac{n+q}{n-2q}\)
a ) Ta có : m ( n + p ) - n ( m - p ) = mn + mp - mn + np
= mp + np = p ( m + n )
=> m ( n + p ) - n ( m - p ) = ( m + n ) p
b ) Ta có : m ( n - p ) - m ( n + q ) = mn - mp - mn - mq
= - mp - mq = - m ( p + q )
=> m ( n - p ) - m ( n + q ) = - m ( p + q )
< Tích nha , chắc đúng 100 % luôn đó >
a)Ta có: m(n+p)-n(m-p)
=mn+mp-mn+np
=mp+np
= (m+n)p (đpcm)
b)m(n-p)-m(n+p)
=mn-mp-mn-mq
=-mp-mq=-mp+(-mq)
=-m(p+q) (đpcm)
Vẽ bốn điểm M, N, P, Q thẳng hàng theo mỗi cách diễn đạt sau:
a) Điểm N nằm giữa hai điểm M và P. Điểm Q nằm giữa hai điểm N và P.
b) Điểm Q và điểm M nằm khác phía với điểm N. Điểm P nằm giữa hai điểm N và Q.
c) Điểm M và điểm P nằm cùng phía với điểm N. Điểm P không nằm giữa hai điểm M và N. Điểm Q nằm giữa hai điểm M và N.
d) Điểm M và điểm Q nằm khác phía với điểm P, điểm P và điểm N nằm cùng phía với điểm M, điểm Q nằm giữa hai điểm P và N.
Vì \(a< b< c< d< m< n\)
\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
Bài giải
Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)
\(c< d\text{ }\Rightarrow\text{ }2c< c+d\)
\(m< n\text{ }\Rightarrow\text{ }2m< m+n\)
\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)
\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)