K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

3 tháng 2 2020

Bạn kiểm tra lại đề bài nhé!

4 tháng 2 2020

sửa 2(x^2-4x+3)y

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

1 tháng 9 2023

Ta có:

\(\left(x-3\right)^4+\left(x-5\right)^4=2\)

\(\Leftrightarrow\left(x-4+1\right)^4+\left(x-4-1\right)^4=2\)

Đặt: \(y=x-4\) ta có: 

\(\Leftrightarrow\left(y+1\right)^4+\left(y-1\right)^4=2\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=2\)

\(\Leftrightarrow2y^4+12y^2+2=2\)

\(\Leftrightarrow2y^4+12y^2=2-2\)

\(\Leftrightarrow2y^4+12y^2=0\)

\(\Leftrightarrow2y^2\left(y^2+6\right)=0\)

Mà: \(y^2+6\ge6>0\forall x\)

\(\Leftrightarrow2y^2=0\)

\(\Leftrightarrow y^2=0\)

\(\Leftrightarrow y=0\)

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

5 tháng 4 2022

\(\Leftrightarrow\dfrac{\left(x-2\right)^3}{4}=\left(x+2\right)^2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)^3}{4}=\dfrac{4\left(x+2\right)^2}{4}\)

\(\Leftrightarrow\left(x-2\right)^3=4\left(x+2\right)^2\)

\(\Leftrightarrow x^3-6x^2+12x-8=4\left(x^2+4x+4\right)\)

\(\Leftrightarrow x^3-6x^2+12x-8=4x^2+8x+8\)

\(\Leftrightarrow x^3-10x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-10x+4\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-10x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=5+\sqrt{21}\\x=5-\sqrt{21}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(S=\left\{0;5+\sqrt{21};5-\sqrt{21}\right\}\)

 

5 tháng 4 2022

\(\Leftrightarrow\dfrac{\left(x-2\right)^3}{4}=\left(x+2\right)^2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)^3}{4}=\dfrac{4\left(x+2\right)^2}{4}\)

\(\Leftrightarrow\left(x-2\right)^3=4\left(x+2\right)^2\)

\(\Leftrightarrow x^3-6x^2+12x-8=4\left(x^2+4x+4\right)\)

\(\Leftrightarrow x^3-6x^2+12x-8=4x^2+16x+16\)

\(\Leftrightarrow x^3-10x^2-4x-24=0\)

 

29 tháng 4 2022

đây là kiến thức có trong bài thi đấy ạ !

 giải Pt: x^2 - 4 + 3 (x-2) = 0

<=> x^2-4 + 3x-6 =0 

<=> x^2+3x = 6+4

<=> 4x = 10 

         x = 5/2

29 tháng 4 2022

mình ko biết có đúng ko nữa ;-;

22 tháng 1 2018

Đặt 3-x = a ; 2-x = b

=> 5-2x = a+b

pt <=> a^4+b^4 = (a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4

<=> a^4+4a^3b+6a^2b^2+4ab^3+b^4-a^4-b^4 = 0

<=> 4a^3b+6a^2b^2+4ab^3 = 0

<=> 2a^3b+3a^2b^2+2ab^3 = 0

<=> ab.(2a^2+3ab+2b^2) = 0

<=> ab=0 ( vì 2a^2+3ab+2b^2 > 0 )

<=> a=0 hoặc b=0

<=> 3-x=0 hoặc 2-x=0

<=> x=3 hoặc x=2

Vậy .............

Tk mk nha