Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
Bình phương hai vế của PT
Ta có: \(x+x^2+2\sqrt{\left(x+x^2\right)\left(x-x^2\right)}+x-x^2=x^2+2x+1\)
\(\Leftrightarrow2\sqrt{x^2-x^4}=x^2+1\)
\(\Leftrightarrow x^2-x^4=\left(\frac{x^2+1}{2}\right)^2\)
\(\Leftrightarrow x^2-x^4=\frac{x^4+2x^2+1}{4}\)
\(2x^2=5x^4+1\)
Không biết giải vậy đúng ko nữa Haizzzz.......
Điều kiện:
\(\hept{\begin{cases}x^3-x^2\ge0\\x^2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x\ge1\end{cases}}\).
Ta nhận thấy x = 0 là nghiệm của (1). Xét trường hợp \(x\ge1\). Khi đó:
\(\left(1\right)\Leftrightarrow2x^2-2\sqrt{x^3-x^2}-2\sqrt{x^2-x}=0\)
\(\Leftrightarrow\left(x^2-2x\sqrt{x-1}+x-1\right)+\left(x^2-x-2\sqrt{x^2-x+1}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x-1}\right)^2+\left(\sqrt{x^2-x}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{x-1}=0\\\sqrt{x^2-x}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=x-1\\x^2-x=1\end{cases}}}\)
\(\Rightarrow x-1=x+1\Rightarrow\)x vô nghiệm
Vậy phương trình đã cho có nghiệm duy nhất là x = 0
P/s: Bọn không biết giải thì dựa cột mà nghe. Đừng có đi chọn sai câu trả lời nhé!
ĐK \(\orbr{\begin{cases}x=0\\x\ge1\end{cases}}\)
Với x=0 thỏa mãn phương trình
Với x\(\ge\)1 ta có \(\sqrt{x^3-x^2}=\sqrt{x^2\left(x-1\right)}\le\frac{1}{2}\left(x^2+x-1\right)\)
\(\sqrt{x^2-x}=\sqrt{1\left(x^2-x\right)}\le\frac{1}{2}\left(x^2-x+1\right)\)
\(\Rightarrow\sqrt{x^3-x^2}+\sqrt{x^2-x}\le x^2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2=x-1\\x^2-x=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=x-1\\x^2=x+1\end{cases}\Rightarrow}x-1=x+1}\)(vô lý)
Vậy pt đã cho có nghiệm duy nhất x=0
Mình cũng học lớp 8 nhưng mình chỉ mới học đến bài 1 của sách toán tập 2 thôi thông cảm nhé !
cộng với nhau
\(x^2+1+\left(y-1\right)^2=2\sqrt{x^2+1}\left(1-y\right)\)
\(\left[\sqrt{x^2+1}+\left(y-1\right)\right]^2=0\Rightarrow\sqrt{x^2+1}=\left(1-y\right)\Rightarrow x^2+1=y^2-2y+1\)
thay vào (2) \(x=-\sqrt{y^2+1}\)
\(\hept{\begin{cases}x^2=y^2-2y\\x^2=y^2+1\end{cases}}\Rightarrow\orbr{\begin{cases}y=-\frac{1}{2}\\x=-\frac{\sqrt{5}}{2}\end{cases}}\) Rất có thể cộng trừ sai:Bạn thử lại xem đúng chưa
a)
\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
b) ĐKXĐ \(x\le3\)
\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.
Tậm nghiệm S = {1}
Điều kiện : \(x\ge0\)
Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)
\(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)
\(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)
\(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)
\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)
Vậy nghiệm phương trình đã cho là : \(x=1\)
Chúc bạn học tốt !!!
(đkxđ: x>0)
Theo BĐT Cauchy ta có
\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}\ge2\sqrt[4]{1}=2\)
Mà VP=7/4 <2=> MT
Vậy PT vô nghiệm
ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}+1-\sqrt{x+1}-4=0\Leftrightarrow-3=0\)(vô lí)
Vậy phương trình vô nghiệm
\(\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
<=> \(\sqrt{\sqrt{\left(x+1\right)}^2+2\sqrt{x+1}+1}-\sqrt{x+1}=4\)
<=>\(\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)
<=> \(\sqrt{x+1}+1-\sqrt{x+1}=4\)
<=> 1 = 4 (vô lí)
<=> \(S=\varnothing\)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(đk:0\le x\le1\)
Ta có: \(\sqrt{x+x^2}=\sqrt{x\left(x+1\right)}\le\frac{x+x+1}{2},\sqrt{x-x^2}=\sqrt{x\left(1-x\right)}\le\frac{x+1-x}{2}\)
\(\Rightarrow VT\le x+1\)
Dấu "=" xra khi \(\hept{\begin{cases}x=x+1\\x=1-x\end{cases}\Leftrightarrow ko\exists x}\)
Vậy pt vô nghiệm