K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 3 2021

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

7 tháng 3 2021

Quoc Tran Anh Le CTV Chưa ra bài tiếp à!?

24 tháng 6 2018

Bình phương hai vế của PT

Ta có: \(x+x^2+2\sqrt{\left(x+x^2\right)\left(x-x^2\right)}+x-x^2=x^2+2x+1\)

\(\Leftrightarrow2\sqrt{x^2-x^4}=x^2+1\)

\(\Leftrightarrow x^2-x^4=\left(\frac{x^2+1}{2}\right)^2\)

\(\Leftrightarrow x^2-x^4=\frac{x^4+2x^2+1}{4}\)

\(2x^2=5x^4+1\)

Không biết giải vậy đúng ko nữa Haizzzz.......

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

28 tháng 6 2019

\(đk:0\le x\le1\)

Ta có: \(\sqrt{x+x^2}=\sqrt{x\left(x+1\right)}\le\frac{x+x+1}{2},\sqrt{x-x^2}=\sqrt{x\left(1-x\right)}\le\frac{x+1-x}{2}\)

\(\Rightarrow VT\le x+1\)

Dấu "=" xra khi \(\hept{\begin{cases}x=x+1\\x=1-x\end{cases}\Leftrightarrow ko\exists x}\)

Vậy pt vô nghiệm

21 tháng 9 2019

Điều kiện : \(x\ge0\)

Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)

            \(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)

            \(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)

              \(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)

             \(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)

Vậy nghiệm phương trình đã cho là : \(x=1\)

Chúc bạn học tốt !!!

9 tháng 3 2018

Điều kiện:

\(\hept{\begin{cases}x^3-x^2\ge0\\x^2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x\ge1\end{cases}}\).

Ta nhận thấy x = 0 là nghiệm của (1). Xét trường hợp \(x\ge1\). Khi đó:

\(\left(1\right)\Leftrightarrow2x^2-2\sqrt{x^3-x^2}-2\sqrt{x^2-x}=0\)

\(\Leftrightarrow\left(x^2-2x\sqrt{x-1}+x-1\right)+\left(x^2-x-2\sqrt{x^2-x+1}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x-1}\right)^2+\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{x-1}=0\\\sqrt{x^2-x}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=x-1\\x^2-x=1\end{cases}}}\)

\(\Rightarrow x-1=x+1\Rightarrow\)x vô nghiệm

  Vậy phương trình đã cho có nghiệm duy nhất là x = 0

P/s: Bọn không biết giải thì dựa cột mà nghe. Đừng có đi chọn sai câu trả lời nhé!

8 tháng 5 2020

ĐK \(\orbr{\begin{cases}x=0\\x\ge1\end{cases}}\)

Với x=0 thỏa mãn phương trình

Với x\(\ge\)1 ta có \(\sqrt{x^3-x^2}=\sqrt{x^2\left(x-1\right)}\le\frac{1}{2}\left(x^2+x-1\right)\)

\(\sqrt{x^2-x}=\sqrt{1\left(x^2-x\right)}\le\frac{1}{2}\left(x^2-x+1\right)\)

\(\Rightarrow\sqrt{x^3-x^2}+\sqrt{x^2-x}\le x^2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2=x-1\\x^2-x=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=x-1\\x^2=x+1\end{cases}\Rightarrow}x-1=x+1}\)(vô lý)

Vậy pt đã cho có nghiệm duy nhất x=0

17 tháng 1 2017

Mình cũng học lớp 8 nhưng mình chỉ mới học đến bài 1 của sách toán tập 2 thôi thông cảm nhé !

17 tháng 1 2017

cộng với nhau

\(x^2+1+\left(y-1\right)^2=2\sqrt{x^2+1}\left(1-y\right)\)

\(\left[\sqrt{x^2+1}+\left(y-1\right)\right]^2=0\Rightarrow\sqrt{x^2+1}=\left(1-y\right)\Rightarrow x^2+1=y^2-2y+1\)

thay vào (2) \(x=-\sqrt{y^2+1}\)

\(\hept{\begin{cases}x^2=y^2-2y\\x^2=y^2+1\end{cases}}\Rightarrow\orbr{\begin{cases}y=-\frac{1}{2}\\x=-\frac{\sqrt{5}}{2}\end{cases}}\) Rất có thể cộng trừ sai:Bạn thử lại xem đúng chưa

7 tháng 7 2018

a)

\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.

7 tháng 7 2018

b) ĐKXĐ \(x\le3\)

\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.

Tậm nghiệm S = {1}

23 tháng 6 2018

(đkxđ: x>0)

Theo BĐT Cauchy ta có

\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}\ge2\sqrt[4]{1}=2\)

Mà VP=7/4 <2=> MT

Vậy PT vô nghiệm

29 tháng 6 2019

ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)

\(\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}+1-\sqrt{x+1}-4=0\Leftrightarrow-3=0\)(vô lí)

Vậy phương trình vô nghiệm
 

29 tháng 6 2019

\(\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)

<=> \(\sqrt{\sqrt{\left(x+1\right)}^2+2\sqrt{x+1}+1}-\sqrt{x+1}=4\)

<=>\(\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)

<=> \(\sqrt{x+1}+1-\sqrt{x+1}=4\)

<=> 1 = 4 (vô lí)

<=> \(S=\varnothing\)