K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 11 2021

\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)

Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)

\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\)\(f\left(1\right)=4\)

\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)

\(y_{min}=0\) khi \(sinx=-1\)

1 tháng 11 2021

Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)

Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)

Vậy \(y_{max}=\dfrac{97}{16}\)

2 tháng 7 2021

Pt \(\Leftrightarrow\left(2sinx-1\right)\left(2sin2x-1\right)=3-4\left(1-sin^2x\right)\)

\(\Leftrightarrow2sin2x\left(2sinx-1\right)-2sinx+1=-1+4sin^2x\)

\(\Leftrightarrow2sin2x\left(2sinx-1\right)-\left(4sin^2x+2sinx-2\right)=0\)

\(\Leftrightarrow2sin2x\left(2sinx-1\right)-2\left(2sinx-1\right)\left(sinx+1\right)=0\)

\(\Leftrightarrow2\left(2sinx-1\right)\left(sin2x-sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\left(1\right)\\sin2x=sinx+1\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\),\(k\in Z\)

Từ (2)\(\Leftrightarrow2sinx.cosx-sinx-1=0\)

(Cái này tạm thời nghĩ ko ra,tối làm :)

2 tháng 7 2021

\(sin2x=sinx+1\)

\(\Rightarrow\left\{{}\begin{matrix}sin2x\ge0\\sin^22x=\left(sinx+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ge0\\4sin^2x.cos^2x=\left(sinx+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ge0\\4sin^2x\left(1-sin^2x\right)=\left(sinx+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ge0\\\left(sinx+1\right)\left(4sin^2x-4sin^3x-sinx-1\right)=0\end{matrix}\right.\)

Bấm máy thấy pt \(-4sin^3x+4sin^2x-sinx-1=0\) có một nghiệm \(sinx< 0\) không thỏa mãn \(sin2x\ge0\)

(Hoặc thử sd phương pháp cardano xem, chắc sẽ tìm được cụ thể nghiệm)

\(\Rightarrow sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\) (\(k\in Z\))

Vậy...

NV
20 tháng 9 2020

\(\Leftrightarrow\left(2sinx-1\right)\left(2sinx-1-sinx+\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

A,C đúng

1: cot x=-6 nên cosx/sinx=-6

=>cosx=-6*sinx

\(F=\dfrac{sinx-3\cdot cosx}{cosx+2\cdot sinx}=\dfrac{sinx+18\cdot sinx}{-6\cdot sinx+2\cdot sinx}=\dfrac{20}{-4}=-5\)

2: cotx=1

=>cosx/sinx=1

=>cosx=sinx

\(I=\dfrac{sin^3x-4\cdot sin^3x}{sinx+3sinx}=\dfrac{5\cdot sin^3x}{4\cdot sinx}=\dfrac{5}{4}\cdot sin^2x\)

\(1+cot^2x=\dfrac{1}{sin^2x}\)

=>\(\dfrac{1}{sin^2x}=1+1=2\)

=>sin^2=1/2

=>\(I=\dfrac{5}{4}\cdot\dfrac{1}{2}=\dfrac{5}{8}\)

3: cotx=3

=>cosx/sinx=3

=>cosx=3*sinx

1+cot^2x=1/sin^2x

=>\(\dfrac{1}{sin^2x}=1+9=10\)

=>\(sin^2x=\dfrac{1}{10}\)

\(I=\dfrac{2\cdot sin^3x+cos^3x}{4\cdot sinx-6\cdot cosx}\)

\(=\dfrac{2\cdot sin^3x+\left(3\cdot sinx\right)^3}{4\cdot sinx-6\cdot\left(3\cdot sinx\right)}=\dfrac{2\cdot sin^3x+27\cdot sin^3x}{4\cdot sinx-18\cdot sinx}\)

\(=\dfrac{29}{-14}\cdot sin^2x=\dfrac{-29}{14}\cdot\dfrac{1}{10}=-\dfrac{29}{140}\)

23 tháng 9 2021

j, ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

\(tan\left(\dfrac{\pi}{3}+x\right)-tan\left(\dfrac{\pi}{6}+2x\right)=0\)

\(\Leftrightarrow tan\left(\dfrac{\pi}{3}+x\right)=tan\left(\dfrac{\pi}{6}+2x\right)\)

\(\Leftrightarrow\dfrac{\pi}{3}+x=\dfrac{\pi}{6}+2x+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(l\right)\)

\(\Rightarrow\) vô nghiệm.

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Lời giải:

\(y=-4\cos ^2x+2\sin x+3=-4(1-\sin ^2x)+2\sin x+3=4\sin ^2x+2\sin x-1\)

Đặt \(\sin x=t(t\in [-1;1])\) thì:

\(y=4t^2+2t-1\)

\(y'=8t+2=0\Leftrightarrow t=-\frac{1}{4}\)

Lập BBT. Với các giá trị \(y(\frac{-1}{4})=\frac{-5}{4}; y(-1)=1; y(1)=5\) ta thấy:

\(y_{\max}=5\Leftrightarrow t=1\Leftrightarrow x=2k\pi +\frac{\pi}{2}\)

\(y_{\min}=\frac{-5}{4}\Leftrightarrow t=\frac{-1}{4}\Leftrightarrow x=2k\pi -2\tan ^{-1}(4\pm \sqrt{15})\)