K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)

Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)

=> Phương trình vô nghiệm

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\Rightarrow x^3-\frac{1}{x^3}=a^3+3a\)

Phương trình trở thành:

\(a^3+3a-2a-2=0\Leftrightarrow a^3+a-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+2\right)=0\)

\(\Rightarrow a=1\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)

NV
29 tháng 6 2019

ĐKXĐ: ...

\(\Leftrightarrow x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\)

\(\Rightarrow x^3-\frac{1}{x^3}=a^3+3\left(x-\frac{1}{x}\right)=a^3+3a\)

Phương trình trở thành:

\(a^3+3a-3a-1=0\Rightarrow a^3=1\Rightarrow a=1\)

\(\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)

NV
30 tháng 6 2019

\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)

\(\Rightarrow x=\pm1\)

20 tháng 2 2016

Ta có : x^4+x^2+1

=x^4+x+x^2-x+1

=x(x^3+1)+(x^2-x+1)

=(x^2+x+1)(x^2-x+1)

Suy ra ta có phương trình :

  X  -1     _    X  + 1   =       10                     

X^2-X +1    X^2+X +1     X(X^2-X+1)(X^2+X+1)

<=>  X^3 - 1 - (  X^3 + 1)       =        10                   

       (X^2-X+1)(X^2+X+1)            X(X^2-X+1)(X^2+X+1)

<=>         -2X                        =           10                  

         X(X^2-X+1)(X^2+X+1)         X(X^2-X+1)(X^2+X+1)

<=> -2X=10

<=>x =-5

vậy x=-5