Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\left(3x-1\right)-\left(5+3x\right)=3\left(2x-1\right)\)
\(\Leftrightarrow6x-2-5-3x=6x-3\)
\(\Leftrightarrow6x-3x-6x=-3+2+5\)
\(\Leftrightarrow-3x=4\)
\(\Leftrightarrow x=-\frac{4}{3}\)
b) \(3\left(x-\frac{1}{2}\right)+4\left(\frac{x}{3}-\frac{1}{3}\right)=\frac{x}{4}\)
\(\Leftrightarrow3x-\frac{3}{2}+\frac{4}{3}x-\frac{4}{3}=\frac{x}{4}\)
\(\Leftrightarrow3x+\frac{4}{3}x-\frac{x}{4}=\frac{3}{2}+\frac{4}{3}\)
\(\Leftrightarrow\frac{49}{12}x=\frac{17}{6}\)
\(\Leftrightarrow x=\frac{34}{49}\)
c) \(\frac{1}{5}\left(x-\frac{1}{3}\right)-4\left(\frac{x}{5}-\frac{1}{2}\right)=x\)
\(\Leftrightarrow\frac{1}{5}x-\frac{1}{15}-\frac{4}{5}x+2=x\)
\(\Leftrightarrow\frac{1}{5}x-\frac{4}{5}x-x=\frac{1}{15}-2\)
\(\Leftrightarrow-\frac{8}{5}x=-\frac{29}{15}\)
\(\Leftrightarrow x=\frac{29}{24}\)
Câu hỏi của Phương Boice - Toán lớp 8 - Học toán với OnlineMath
Đặt \(\sqrt{x^2-x+1}=a\left(ĐK:a>0\right)\)
\(pt\Leftrightarrow\frac{\left(x^6+3x^4a\right)\left(4-a^2\right)}{4\left(2+a\right)a^2}=a\left(2-a\right)\)
\(\Leftrightarrow\left(x^6+3x^4a\right)\left(4-a^2\right)=4a^3\left(4-a^2\right)\)
\(\Leftrightarrow\left(4-a^2\right)\left(x^6+3x^4a-4a^3\right)=0\)
TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=2\left(n\right)\end{cases}}\)
Với a = 2 , \(\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)
TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-x^4a+4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)
\(\Leftrightarrow\left(x^2-a\right)\left(x^4+4x^2a+4a^2\right)=0\Leftrightarrow\left(x^2-a\right)\left(x^2+2a\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\left(l\right)\end{cases}}\)
Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)
Đến đây bình phương và tìm ra nghiệm.
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow16=\left(x+4\right)^2\)
\(\Leftrightarrow x^2+8x+16=16\)
\(\Leftrightarrow x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)
V...\(S=\left\{-8\right\}\)
^^
bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé
ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)
Có:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)
Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)
vào phương trình, ta có: \(\left(x-4\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8
Vậy phương trình có nghiệm x=8
Đặt \(x+\dfrac{1}{x} =a\)
Ta có : \((x+\dfrac{1}{x})^2 =a^2\) ⇒(x+1x)2=a2⇒x2+2+1x2=a2⇒x2+1x2=a2−2
ta có 8(x+1x)2+4(x2+1x2)2−4(x2+1x2)(x+1x)2=(x+4)2⇔8a2+4.(a2−2)2−4(a2−2)a2=(x+4)2
⇔8a2+4(a4−4a2+4)−4a4+8a2=(x+4)2
⇔8a2+4a4−16a2+16−4a4+8a2−(x+4)2=0
⇔(x+4)2=16
⇔x+4=4 hoặc x+4=−4
⇔x=−4 ( thỏa mãn x≠0) hoặc x=0 (ktm x≠0)
Vậy x=-4