K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2015

Gọi d là ước chung của 16n+5 và 6n+2

=>(6n+2)-(16n+5) chia hết cho d

=>8(6n+2)-3(16n-5) chia hết cho d

=>48n+16-48n-15 chia hết cho d

=>1 chia hết cho d

=>d =-1 hoặc d=1

=>16n+5 và 6n+2 là 2 số nguyên tố cùng nhau 

=> phân số đó là phân số tối giản

1 tháng 2 2015

tức là chứng minh ƯCLN của chúng là 1

22 tháng 5 2016

Gọi d là ƯCLN (16n+5;6n+2)

Ta có: 16n+5 - 6n+2 chia hết cho d

Suy ra: 3.(16n+5) - 8.(6n+2) chia hết cho d

             48n+15 - 48n+16 chia hết cho d

                 -1 chia hết cho d

            Thì d = 1

Vậy \(\frac{16n+5}{6n+2}\) là một phân số tối giản!

        

20 tháng 3 2015

gọi ƯCLN(16n+5,6n+2)=d

có 16n+5 chia hết cho d=> 48n+15 chia hết cho d

có 6n+2 chia hết cho d => 48n+16 chia hết cho d

=> (48n+16)-(48n+15) chia hết cho d

=> 1 chia hết cho d=> d=1=>16n+5 và 6n+2 nguyên tố cùng nhau=>\(\frac{16n+5}{6n+2}\)tối giản

19 tháng 2 2016

\(\frac{16n+5}{6n+2}\)là phân số tối giản ta đi chúng minh (16n+5; 6n+2)=1

Đặt: (16n+5; 6n+2)=d

=> 16n+5 chia hết cho d và 6n+2 chia hết cho d

=> 8.(6n+2) - 3.(16n+5) chia hết cho d=> 48n+16 - 48n-15=1

1 chia hết cho d hay d\(\in\)Ư(1) ={-1;1} 

Vậy: d=1 => \(\frac{16n+5}{6n+2}\)là phân số tối giản

\(\frac{14n+3}{21n+4}\)  làm tương tự như trên

25 tháng 4 2020

Gọi d là ƯCLN (16n+5; 6n+2) ( d thuộc N*)

\(\Rightarrow\hept{\begin{cases}16n+5⋮d\\6n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(16n+5\right)⋮d\\8\left(6n+2\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}48n+15⋮d\\48n+16⋮d\end{cases}}}\)

=> (48n+16)-(48n+15) chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1

=> ƯCLN (16n+5; 6n+2)=1

=> đpcm

25 tháng 4 2020

Gọi d là ƯC(16n + 5; 6n + 2)

=> \(\Rightarrow\hept{\begin{cases}16n+5⋮d\\6n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(16n+5\right)⋮d\\8\left(6n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}48n+15⋮d\\48n+16⋮d\end{cases}}}\)

=> ( 48n + 16 ) - ( 48n + 15 ) chia hết cho d

=> 48n + 16 - 48 - 15 chia hết cho d

=> ( 48n - 48n ) + ( 16 - 15 ) chia hết cho d

=> 0 + 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(16n + 5 ; 6n + 2) = 1

=> \(\frac{16n+5}{6n+2}\)tối giản ( đpcm )

22 tháng 5 2016

gọi d là UCLN(6n+12;3n+5)

ta có:

[6n+12]-[2(3n+5)] chia hết d

=>[6n+12]-[6n+10] chia hết d

=>2 chia hết d 

=>d={1;-1;2;-2}

Mà d=2 hoặc -2 thì phân số trên ko tối giản

=>d=1 hoặc -1

=>phân số trên tối giản

22 tháng 5 2016

gọi d là UCLN(6n+12;3n+5)

ta có:

[6n+12]-[2(3n+5)] chia hết d

=>[6n+12]-[6n+10] chia hết d

=>2 chia hết d 

=>d={1;-1;2;-2}

Mà d=2 hoặc -2 thì phân số trên ko tối giản

=>d=1 hoặc -1

=>phân số trên tối giản

\(\Leftrightarrow\left\{{}\begin{matrix}6n+15⋮d\\6n+11⋮d\end{matrix}\right.\Leftrightarrow d=1\left(2n+5⋮̸2\right)\)

18 tháng 4 2015

Gọi d là ƯCLN(16n+5;24n+7)

=>16n+5 chia hết cho d và 24n+7 chia hết cho d

=>3(16n+5) chia hết cho d và 2(24n+7) chia hết cho d

=>48n+15 chia hết cho d và 48n+14 chia hết cho d

=>(48n+15)-(48n+14) chia hết cho d

=>1 chia hết cho d

=>d=1;ƯCLN(16n+5;24n+7)=1

Vì ƯCLN(16n+5;24n+7)=1 nên 16n+5/24n+7 tối giản