Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
b) \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
a, Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)
\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)
b, Ta có : \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(VT=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)
a/
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)
\(=ab-ac-ab-bc+ac-bc=-2bc\)
b/
\(a\left(1-b\right)+a\left(a^2-1\right)=\)
\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)
c/
\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)
\(=ab+bx=b\left(a+x\right)\)
\(1:\left[\left(-a\right)^5.\left(-a\right)^5\right]^2+\left[\left(-a\right)^2.\left(-a\right)^2\right]^5=0\)
\(\Rightarrow\left[\left(-a\right)^{10}\right]^2+\left[\left(-a\right)^4\right]^5=1:0\)
=>Đề sai bạn xem lại nha
Chúc bn học tốt
a, \(\left(a+1\right)^2\ge4a\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)
b, Áp dụng bđt Cô-si
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(=8\sqrt{abc}=8\)(ĐPCM)
Dấu "=" khi a = b = c =1
a, \(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1>4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)
b, Áp dụng bất đẳng thức trên ta có :
( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)
Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.
Khi đó : a + 1 > \(2\sqrt{a}\)
Tương tự ta có :
b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)
=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)
Sai rồi thê này nè
a/ \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Ta co: \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
b/ \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta co: \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\)
\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
Vậy \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\).
Đề bài: CM \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Bài làm:
Ta có: \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}\)
\(=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}\)
\(=\frac{1}{a}-\frac{1}{a+1}\)
=> \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
=> đpcm