K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

Xem lại đề.

26 tháng 2 2019

Đề hoàn toàn đúng

7 tháng 12 2018

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

7 tháng 12 2018

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

\(1:\left[\left(-a\right)^5.\left(-a\right)^5\right]^2+\left[\left(-a\right)^2.\left(-a\right)^2\right]^5=0\)

\(\Rightarrow\left[\left(-a\right)^{10}\right]^2+\left[\left(-a\right)^4\right]^5=1:0\)

=>Đề sai bạn xem lại nha

Chúc bn học tốt

14 tháng 3 2017

\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O

=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)

\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)

\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)

=\(\left(-a^n\right).a^k\)