Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)
Ta có:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ
= 5ⁿ.(5² + 5 + 1)
= 5.31 ⋮ 31
Vậy A ⋮ 31
b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺² - 2ⁿ
= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)
= 3.10 + 2ⁿ⁻¹.2.5
= 10.(3 + 2ⁿ⁻¹) ⋮ 10
Vậy B ⋮ 10
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) để x nguyên
=>13 chia hết n+2
=>n+2= 1 hoặc -1 hoặc -13 hoặc 13
=>n= -1 hoặc -3 hoặc -15 hoặc 11
\(a, 10^{n+1} -6.10 ^n\)
= \(10^n (10-6)=4.10^n\)
\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)
= \(2^n (2^3+2^2-2+1)\)
= \(2^n (8+4-2+1)\)
\(= 11.2^n\)
\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)
\(= 10^k(90-2+1)\)
= \(89.10^k\)
\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)
\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)
= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)
= \(5^{n-3+2}+5^n -6.5^{n-1}\)
\(= 5^{n-1}(1+5-6)\)
= \(5^{n-1}.0\)
= 0
cảm ơn ạ