K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

\(\frac{4}{9}x^2-4x+5=\frac{4}{9}x^2-2\cdot\frac{2}{3}x\cdot3+3^2-4=\left(\frac{2}{3}x-3\right)^2-4\)

\(\left(\frac{2}{3}x-3\right)^2\ge0\forall x\Rightarrow\left(\frac{2}{3}x-3\right)^2-4\ge-4\)

Đến chỗ này bạn xem lại đề nhé ;-; Luôn dương đâu -.- 

13 tháng 8 2020

ok bạn nhé đề bị sai đó :))))

15 tháng 7 2023

\(4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)

mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow4\left(x-\dfrac{1}{2}\right)^2+2>0\) với mọi x

\(\Rightarrow dpcm\)

15 tháng 7 2023

\(A=4x^2-4x+3=4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)

mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

28 tháng 12 2021

\(x^2-4x+8\\ =\left(x-2\right)^2+4\ge4>0\forall x\)

31 tháng 7 2016

a) \(x^2+6x+10\)

\(=\left(x^2+2.3x+9\right)+1\)

\(=\left(x+3\right)^2+1\ge1>0\)

\(\Rightarrow DPCM\)

b) \(x^2-x+1\)

\(=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow DPCM\)

c) \(x^4-4x^2+5\)

\(=\left[\left(x^2\right)^2-2.2.x^2+2^2\right]+1\)

\(=\left(x^2-2\right)^2+1\ge1>0\)

\(\Rightarrow DPCM\)

26 tháng 12 2021

\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4>0\)

Vậy biểu thức \(x^2-4x+8\) luôn dương với mọi x

26 tháng 12 2021

\(x^2-4x+8\\ =x^2-4x+4+4\\ =\left(x-2\right)^2+4\ge4>0\forall x\)

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

21 tháng 7 2017

a)

\(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5>0\)

b)

\(4x^2+4x+2017=4\left(x^2+x\right)+2017=4\left(x+\frac{1}{2}\right)^2-1+2017=4\left(x+\frac{1}{2}\right)^2+2016>0\)

c)

\(10-6x+x^2=x^2-6x+10=\left(x-3\right)^2-9+10=\left(x-3\right)^2+1>0\)

d)

\(1-x+x^2=x^2-x+1=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)