Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)
=>30n^2+21n+13-30n^2-16n-12 chia hết cho d
=>5n+1 chia hết cho d
=>5n chia hết cho d và 1 chia hết cho d
=>d=1
=>P là phân số tối giản
bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3
bn tham khảo ở
https://olm.vn/hoi-dap/tim-kiem?id=1169850&subject=1&q=+++++++++++T%C3%ACm+UCLN(7n+3,8n-1)+v%E1%BB%9Bi+(n+thu%E1%BB%99c+N*).T%C3%ACm+%C4%91i%E1%BB%81u+ki%E1%BB%87n+c%E1%BB%A7a+n+%C4%91%E1%BB%83+hai++s%E1%BB%91+%C4%91%C3%B3+nguy%C3%AAn+t%E1%BB%91+c%C3%B9ng+nhau++++++++++
Đặt \(d=\left(9n+2,12n+3\right)\).
Suy ra \(\hept{\begin{cases}9n+2⋮d\\12n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(9n+2\right)⋮d\\3\left(12n+3\right)⋮d\end{cases}}\Rightarrow3\left(12n+3\right)-4\left(9n+2\right)=1⋮d\)
Suy ra \(d=1\), do đó ta có đpcm.
Đặt d=(9n+2,12n+3)d=(9n+2,12n+3).
Suy ra \hept{9n+2⋮d12n+3⋮d⇒\hept4(9n+2)⋮d3(12n+3)⋮d⇒3(12n+3)−4(9n+2)=1⋮d\hept{9n+2⋮d12n+3⋮d⇒\hept{4(9n+2)⋮d3(12n+3)⋮d⇒3(12n+3)−4(9n+2)=1⋮d
Suy ra d=1d=1, do đó ta có đpcm.
Gọi d là ước của 9n+2 và 12n+3 nên
\(9n+2⋮d\Rightarrow4\left(9n+2\right)=36n+8⋮d\)
\(12n+3⋮d\Rightarrow3\left(12n+3\right)=36n+9⋮d\)
\(\Rightarrow36n+9-\left(36n+9\right)=1⋮d\Rightarrow d=1\)
=> 9n+2 và 12n+3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(9n + 2; 12n + 3)
⇒ 9n + 2 ⋮ d ⇒ 36n + 8 ⋮ d
12n + 3 ⋮ d ⇒ 36n + 9 ⋮ d
⇒ (36n + 9) - (36n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 9n + 2 và 12n + 3 là hai số nguyên tố cùng nhau
Lời giải:
Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$
Ta có: $2n+1\vdots d; 2n-1\vdots d$
$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$
$\Rightarrow d=\left\{1;2\right\}$
Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)
$\Rightarrow d=1$
Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.