Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)
=>30n^2+21n+13-30n^2-16n-12 chia hết cho d
=>5n+1 chia hết cho d
=>5n chia hết cho d và 1 chia hết cho d
=>d=1
=>P là phân số tối giản
bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3
Ta có :
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)
\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Mặt khác :
\(n^7+n^2+1=n^7-n+n^2+n+1\)
\(=(n-1)(n^6-1)+n^2+n+1\)
\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản
Hok tốt :>
gọi d là UCLN(21n+4;14n+3)
ta có:
[3(14n+3)]-[2(21n+4)]chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1
=>phân số trên tối giản
gọi ƯCLN (21n+4;14n+3)=d
=> 21n+4 chia hết cho d
14n+3 chia hết cho d
=> 42n+8 chia hết cho d
42n+9 chia hết cho d
=> 1chia hết cho d
=> d=1
=>\(\frac{21n+4}{14n+3}\)là phân số tối giản.(đpcm)
(hình như đây là toán lớp 6 thì phải:D)