K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

\(\dfrac{a+b}{a+c}=\dfrac{a-b}{a-c}\)

\(\Rightarrow\left(a+b\right)\left(a-c\right)=\left(a+c\right)\left(a-b\right)\)

\(\Rightarrow a\left(a-c\right)+b\left(a-c\right)=a\left(a-b\right)+c\left(a-b\right)\)

\(\Rightarrow a^2-ac+ab-bc=a^2-ab+ac-bc\)

\(\Rightarrow a^2-ac+ab=a^2-ab+ac\)

\(\Rightarrow a^2+ab+ab=a^2+ac+ac\)

\(\Rightarrow2ab=2ac\)

\(\Rightarrow ab=ac\)

\(\Rightarrow\dfrac{b}{a}=\dfrac{c}{a}\)

Đặt:

\(\dfrac{b}{a}=\dfrac{c}{a}=k\)

\(\Rightarrow\left\{{}\begin{matrix}b=ak\\c=ak\end{matrix}\right.\)

\(\Rightarrow\dfrac{10b^2+9bc+2c^2}{2b^2+bc+2c^2}=\dfrac{10ak^2+9ak^2+2ak^2}{2ak^2+ak^2+2ak^2}\)

\(=\dfrac{21ak^2}{5ak^2}=\dfrac{21}{5}\)

20 tháng 11 2015

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b+a-b}{a+c+a-c}=1\Rightarrow a+b=a+c\Rightarrow b=c\)

\(\text{Suy ra: }A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=4\)

thể hiện đấy

2 tháng 7 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{2b}{2c}=\frac{b}{c}\)  \(=>b=c\)

Thay vào P,ta có:

\(P=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10c^2+9c^2+c^2}{2c^2+c^2+2c^2}=4\)

14 tháng 12 2017

Đặt :

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{7}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=4k\\c=7k\end{matrix}\right.\) \(\left(1\right)\)

Thay \(\left(1\right)\)\(A=\dfrac{a-b+c}{a+2b-c}\) ta được :

\(A=\dfrac{2k-5k+7k}{2k+2.5k-7k}\)\(=\dfrac{4k}{5k}\) \(=\dfrac{4}{5}\)

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

19 tháng 12 2021

Lưu ý: Ko buff bẩn + ko spam + ko copy + ko nhận những câu trả lời chứa link tới các web khác + phải có lời giải thích đàng hoàng + vv

26 tháng 2 2017

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(a+c\right)+\left(a-c\right)}=\frac{2a}{2a}=1\)

\(\Rightarrow a+b=a+c\Rightarrow b=c\)Thay vao biểu thức trên đề bài ta được :

\(\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=\frac{20}{5}=4\)