Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CE
a: Xét tứ giác ACEB có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ACEB là hình bình hành
Suy ra: AC//BE
a/ Trong TG ABC : AB2=BC2-AC2 (đ/l Pytago đảo)
AB2=102-82=62
=> TG ABC là TG vuông .
\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)
\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)
\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)
Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng
CÂu 1:
5x = 53
=> x = 53 / 5
=> x = 10,6
Câu 2:
a) Xét tam giác ABM và tam giác ECM
AMB = EMC ( 2 góc đối đỉnh)
MA = ME (giả thiết)
MB = MC (vì M là trung điểm của BC)
=> tam giác ABM = tam giác ECM (C-G-C)
b) Từ a) tam giác ABM = tam giác ECM
=> BAM = CME (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên
=> AB // CE
c) Từ câu b) AB // CE ta có
=> góc A = góc C (trong cùng phía)
=> A + C = 180 độ
=> 180 độ - A = C
=> 180 độ - 90 độ = 90 độ
=> Vậy EC vuông góc với AC
a ) Xét \(\Delta\)MAB và \(\Delta\)MDC có :
- MA = MD ( giả thiết )
- Góc AMB = Góc DMC ( đối đỉnh )
- BM = MC ( vì M là trung điểm BC )
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MDC ( c - g - c )
\(\Rightarrow\)AB = CD ( 2 cạnh tương ứng )
b ) Xét \(\Delta\)ABC và \(\Delta\)DCB có :
- AB = CD ( chứng minh trên )
- BC : cạnh chung
- Góc ABC = Góc DCB ( \(\Delta\)MAB = \(\Delta\)MDC )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DCB ( c - g - c )
\(\Rightarrow\)BÂC = Góc CDB = 90° ( 2 góc tương ứng )
c ) Xét \(\Delta\)BAE có : BH là đường cao, đồng thời cũng là trung tuyến.
\(\Rightarrow\)\(\Delta\)BAE cân tại B
\(\Rightarrow\)AB = BE
Mà AB = CD ( chứng minh trên )
\(\Rightarrow\)BE = CD
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
a. Xét △ABM và △DCM:
\(AM=MD\left(gt\right)\)
\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)
\(BM=MC\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong
\(\Rightarrow CD\text{ // }AB\left(a\right)\)
c. Xét △CIK và △AIB:
\(AI=IC\left(gt\right)\)
\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)
\(BI=IK\left(gt\right)\)
\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong
\(\Rightarrow AB\text{ // }CK\left(b\right)\)
Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)
Vậy: D, C, K thẳng hàng (đpcm).
a) Xét tam giác ABM và tam giác DCM:
BM = CM (M là trung điểm BC).
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).
MA = MD (cmt).
\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).
b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) CD // AB (dhnb).
c) Xét tứ giác AKCB có:
I là trung điểm AC (gt).
I là trung điểm BK (IB = IK).
\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).
\(\Rightarrow\) CK // AB (Tính chất hình bình hành).
Mà CD // AB (cmt).
\(\Rightarrow\) D, C, K thẳng hàng.