K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

a ) Xét \(\Delta\)MAB và \(\Delta\)MDC có : 

  • MA = MD ( giả thiết )
  • Góc AMB = Góc DMC ( đối đỉnh )
  • BM = MC ( vì M là trung điểm BC )

\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MDC ( c - g - c )

\(\Rightarrow\)AB = CD ( 2 cạnh tương ứng )

b ) Xét \(\Delta\)ABC và \(\Delta\)DCB có :

  • AB = CD ( chứng minh trên )
  • BC : cạnh chung
  • Góc ABC = Góc DCB ( \(\Delta\)MAB = \(\Delta\)MDC ) 

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DCB ( c - g - c )

\(\Rightarrow\)BÂC = Góc CDB = 90° ( 2 góc tương ứng )

c ) Xét \(\Delta\)BAE có : BH là đường cao, đồng thời cũng là trung tuyến.

\(\Rightarrow\)\(\Delta\)BAE cân tại B

\(\Rightarrow\)AB = BE 

Mà AB = CD ( chứng minh trên )

\(\Rightarrow\)BE = CD

27 tháng 12 2021

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

\(\text{#TNam}\)

`a,` Xét Tam giác `AMB` và Tam giác `EMC` có:

`MA=ME (g``t)`

\(\widehat{AMB}=\widehat{CME} (\text {2 góc đối đỉnh})\)

`MB=MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác AMB = Tam giác EMC (c-g-c)}`

`b,` Vì Tam giác `AMB =` Tam giác `EMC (a)`

`-> AB = CE (\text {2 cạnh tương ứng}) (1)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`\text {BH chung}`

`=> \text {Tam giác ABH = Tam giác DBH (c-g-c)}`

`-> AB = BD (\text {2 cạnh tương ứng}) (2)`

Từ `(1)` và `(2) -> CE = BD.`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`\text {MH chung}`

\(\widehat{AHM}=\widehat{DHM}=90^0\)

`HA = HD (g``t)`

`=> \text {Tam giác AMH = Tam giác DMH (c-g-c)}`

`-> MA = MD (\text {2 cạnh tương ứng})`

Xét Tam giác `AMD: MA = MD`

`-> \text {Tam giác AMD cân tại M}`

*Hoặc nếu như bạn có học rồi, thì mình có thể dùng cái này cũng được nè cậu:>.

Vì `MH` vừa là đường cao (hạ từ đỉnh `->` cạnh đối diện), vừa là đường trung tuyến.

Theo tính chất của tam giác cân `-> \text {Tam giác AMD là tam giác cân} (đpcm).`

loading...

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔMAD có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMAD cân tại M

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

22 tháng 4 2018

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

a: Xét ΔAMB và ΔEMC co

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔAMD có

MH vừa là đường cao, vừa là trung tuyến

nên ΔAMD cân tại M

21 tháng 12 2021

\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)

\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)

\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)

\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)

Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng