Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AH vuông góc với BC mà tam giác ABC cân tại A (gt)
Nên AH vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow BH=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\)
Áp dụng định lý Pi-ta-go vào tam giác ABH vuông tại H có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)
Hay \(AH^2=12^2-5^2\)
\(\Rightarrow AH^2=144-25\)
\(\Rightarrow AH^2=119\)
\(\Rightarrow AH=\sqrt{119}\)
Vì \(\Delta ABC\)cân tại A
\(\Rightarrow AB=AC=12cm\)và \(\widehat{B}=\widehat{C}\)
Ta có: \(\Delta ABH\)vuông tại H
\(\Rightarrow\widehat{BAH}+\widehat{B}=90^o\)(1)
Ta lại có: \(\Delta ACH\)vuông tại H
\(\Rightarrow\widehat{CAH}+\widehat{C}=90^o\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{BAH}+\widehat{B}=\widehat{CAH}+\widehat{C}\)
mà \(\widehat{B}=\widehat{C}\)\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
Xét \(\Delta BAH\)và \(\Delta CAH\)ta có: +) \(\widehat{BAH}=\widehat{CAH}\)( cmt)
+) \(AB=AC\)
+) \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta BAH=\Delta CAH\left(g.c.g\right)\)
\(\Rightarrow BH=HC\)( 2 cạnh tương ứng )
mà \(BC=10cm\)
\(\Rightarrow BH=HC=5cm\)
Ta có \(\Delta BAH\)vuông tại H nên theo định lý Py-ta-go ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2+5^2=12^2\)
\(\Rightarrow AH^2=12^2-5^2=144-25=119\)
\(\Rightarrow AH=\pm\sqrt{119}\)
mà \(AH>0\)\(\Rightarrow AH=\sqrt{119}\)
Vậy \(AH=\sqrt{119}\)
AC = AH + HC = 6 + 4 =10 ( cm )
Vì tam giác ABC cân tại A
=> AC = AB = 10 (cm)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
AB^2 = AH^2 + BH^2
=> BH^2 = AB^2 - AH^2
BH^2 = 10^2 - 6^2 = 100 - 36 = căn 64 = 8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
BC^2 = HC^2 + HB^2
= 4^2 + 8^2 = 16 + 64 =căn 80
Vậy BC = căn 80
fdghgfghhjhj