Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) Chứng minh A ⋮ 5
Ta có:
A = 4¹⁹ + 4¹⁸ + ... + 4² + 4 + 1
= (4¹⁹ + 4¹⁸) + ... + (4³ + 4²) + (4 + 1)
= 4¹⁸.(4 + 1) + ... + 4².(4 + 1) + (4 + 1)
= 4¹⁸.5 + ... + 4².5 + 5
= 5(4¹⁸ + ... + 4² + 1) ⋮ 5
Vậy A ⋮ 5
*) Chứng minh A ⋮ 17
Ta có:
4¹⁹ + 4¹⁸ + ... + 4² + 4 + 1
= 4¹⁹ + 4¹⁸ + 4¹⁷ + 4¹⁶ + ... + 4³ + 4² + 4 + 1
= (4¹⁹ + 4¹⁸ + 4¹⁷ + 4¹⁶) + ... + (4³ + 4² + 4 + 1)
= 4¹⁶(4³ + 4² + 4 + 1) + ... + (4³ + 4² + 4 + 1)
= 4¹⁶.85 + ... + 85
= 85.(4¹⁶ + ... + 1) ⋮ 17 (vì 85 ⋮ 17)
Vậy A ⋮ 17
\(4S=4+4^2+4^3+4^4+...+4^{100}\)
\(3S=4S-S=4^{100}-1\Rightarrow3S+1=4^{100}\)
Ta có \(32^{20}=\left(2^5\right)^{20}=2^{100}\)
\(\Rightarrow4^{100}>2^{100}\Rightarrow3S+1>32^{20}\)
Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)
\(S=4^0+4^1+...+4^{34}+4^{35}\)
\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)
\(\Rightarrow4S-S=4^{36}-4^0\)
\(\Rightarrow3S=4^{36}-1< 4^{36}\)
Vậy \(3S< 64^{12}\)
a, ta có :
\(\hept{\begin{cases}\frac{6}{7}< 1\\\frac{11}{10}>1\end{cases}}\Rightarrow\frac{6}{7}< \frac{11}{10}\)
b, ta có :
\(\hept{\begin{cases}\frac{-5}{7}< 0\\\frac{2}{7}>0\end{cases}}\Rightarrow\frac{-5}{7}>\frac{2}{7}\)
c, ta có :
\(\hept{\begin{cases}\frac{419}{-723}< 0\\\frac{-697}{-313}>0\end{cases}}\Rightarrow\frac{419}{-723}< \frac{-679}{-313}\)
a,Ta có:
6/7< 1< 11/10
=> 6/7< 11/10
b,Ta có:
-5/17< 0< 2/7
=> -5/7< 2/7
Câu 4:
a: \(\dfrac{6}{7}< 1< \dfrac{11}{10}\)
b: -5/17<0<2/7
c: \(\dfrac{419}{-723}< 0< \dfrac{-699}{-313}\)
1. a, \(\frac{6}{7}\)=\(\frac{60}{70}\);\(\frac{11}{10}\)=\(\frac{77}{70}\)
vì \(\frac{60}{70}\)<\(\frac{77}{70}\)nên \(\frac{6}{7}\)<\(\frac{11}{10}\)
b, \(\frac{-5}{17}\)<0<\(\frac{2}{7}\)
c, \(\frac{419}{-723}\)<0<\(\frac{-697}{-313}\)
2.
Ta có :\(\frac{2}{6}\)=\(\frac{20}{60}\);\(\frac{5}{12}\)=\(\frac{25}{60}\);\(\frac{4}{15}\)=\(\frac{16}{60}\);\(\frac{8}{20}\)=\(\frac{24}{60}\);\(\frac{10}{30}\)=\(\frac{20}{60}\)
Vì \(\frac{16}{60}\)<\(\frac{20}{60}\)<\(\frac{24}{60}\)<\(\frac{25}{60}\)nên \(\frac{4}{15}\)<\(\frac{2}{6}\)=\(\frac{10}{30}\)<\(\frac{8}{20}\)<\(\frac{5}{12}\)
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
tổng \(\frac{4^{21}-4}{3}\)đó là tổng S nhá ta có :\(4^{21}=4^{19}.4^3\)-4+4 vậy 17 . 4^19 lớn nơn