Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
Ta cóL
a+5b chia hết cho 7
=> 10(a+5b)=10a+50b chia hết cho 7
Mà 49b chia hết cho 7
=> 10a+50b-49b chia hết cho 7
=> 10a+b chia hết cho 7
Giả sử a - b chia hết cho 6, tức là tồn tại số nguyên k sao cho a - b = 6k. (1)
a) Chứng minh a + 5b chia hết cho 6:
Ta có:
a + 5b = (a - b) + 6b.
Từ (1), ta thay thế a - b = 6k vào biểu thức trên:
a + 5b = 6k + 6b = 6(k + b).
Vì k + b là một số nguyên, nên a + 5b chia hết cho 6.
b) Chứng minh a - 13b chia hết cho 6:
Tương tự như trường hợp trên, ta có:
a - 13b = (a - b) - 12b.
Thay thế a - b = 6k (theo (1)) vào biểu thức trên:
a - 13b = 6k - 12b = 6(k - 2b).
Vì k - 2b là một số nguyên, nên a - 13b chia hết cho 6.
a, \(a+5b=\left(a-b\right)+6b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\6b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)+6b⋮6\Rightarrow a+5b⋮6\)
b, \(a-13b=\left(a-b\right)-12b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\-12b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)-12b⋮6\Rightarrow a-13b⋮6\)