K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

giá trị dương hay giá trị nguyên dương vậy bạn? hai loại khác nhau nhé

12 tháng 3 2017

Để \(M=\frac{7-x}{x-3}\) có giá trị dương <=> 7 - x và x - 3 cùng dấu

TH1 : \(\hept{\begin{cases}7-x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x< 3\end{cases}}}\) (loại)

TH2 : \(\hept{\begin{cases}7-x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}\Rightarrow}x=4;5;6}\) (nhận)

Vậy \(x=4;5;6\)

E đg cần gấp, giúp e

10 tháng 5 2022

Để `M = ( 7-x )/( x-4 )` nguyên 

`=> 7-x` \(\vdots\) `x-4`

`=> x-7` \(\vdots\) `x-4`

`=> \(x-4-3\) \(\vdots\) `x-4`

Do `x-4` \(\vdots\) `x-4` mà để `x-4-3` \(\vdots\) `x-4`

`=> 3` \(\vdots\) `x-4` hay `x-4 in Ư_(3) = { +-1 ; +-3 }`

`=> x in { 5;3;7;1}`

Vậy `x in { 5;3;7;1}` 

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$

Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$

Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$

$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)

18 tháng 4 2017

\(\frac{4x+7}{x+2}=\frac{4x+8}{x+2}-\frac{1}{x+2}=4-\frac{1}{x+2}\)

Biểu thức đạt giá trị nguyên khi \(\frac{1}{x+2}\) nguyên <=> 1 chia hết cho x+2

<=>\(x+2\inƯ\left(1\right)\)={-1;1} <=> x\(\in\){-3;-1}

20 tháng 12 2021

\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{0;-2;2;-4\right\}\)

20 tháng 12 2021

⇔x+1∈{1;−1; 3 ;−3}⇔x+1∈{1 ;− 1 ; 3 ;−3}

hay x∈{0;−2; 2;−4}

15 tháng 5 2016

Để M có giá trị dương thì (x-3) và (x+7) phải cùng dấu

Ta xét 2 trường hợp:

TH1: x-3 > 0 và x+7 > 0 

\(\Leftrightarrow\) x > 3 và x > -7

\(\Leftrightarrow x>3\) (1)

TH2: x-3 < 0 và x+7 < 0 

\(\Leftrightarrow\) x < 3 và x < -7

\(\Leftrightarrow x<-7\) (2)

Từ (1) và (2) ta suy ra x > 3 và x < -7 thì M > 0 

15 tháng 5 2016

\(M>0\Leftrightarrow\left(x-3\right)\left(x+7\right)>0\)

=>x-3 và x-7 cùng dấu

+)\(\int^{x-3>0}_{x-7>0}\Leftrightarrow\int^{x>3}_{x>7}\Leftrightarrow x>7\left(1\right)\)

+)\(\int^{x-3<0}_{x-7<0}\Leftrightarrow\int^{x<3}_{x<7}\Leftrightarrow x<3\left(2\right)\)

Từ (1) và (2) suy ra x>7 và x<3 thì thỏa mãn M>0