Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)
\(\Leftrightarrow x\ge0\)
b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :
TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)
TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)
c) Tương tự câu b)
a) Ta có ; \(x^2\ge0\forall x\in R\)
Nên A dương khi 4x \(\ge0\forall x\in R\)
=> \(x\ge0\)
Vậy A dương khi \(x\ge0\)
Để a dương \(< =>\left(x-1\right)\left(x-2\right)-\left(x-3\right)>0\)
\(< =>x^2-2x-x+2-x+3>0\)
\(< =>x^2-4x+5>0\)
\(< =>x\left(x-4\right)>5\)
\(< =>x>6\)
Vậy để a dương thì x > 6
Quân , a lm cái j vậy ?
\(A=\frac{\left(x-1\right)\left(x-2\right)}{x-3}\)
Để A dương => A > 0
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{x-3}>0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x-3}>0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x-3}>\frac{0}{x-3}\)
\(\Leftrightarrow x^2-3x+2>0\Leftrightarrow1< x< 2\)
\(\Leftrightarrow x-3>0\Leftrightarrow3>x\)
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
Để C dương thì xảy ra các trường hợp:
\(\orbr{\begin{cases}\frac{1}{2}-x>0;\frac{1}{3}-x>0\\\frac{1}{2}-x< 0;\frac{1}{3}-x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)
Để C > 0
=> \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\)hoặc \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\)
Nếu \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}\Rightarrow}x< \frac{1}{3}}\)
Nếu \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Rightarrow}x>\frac{1}{2}}\)
Vậy \(C>0\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)
Để M có giá trị dương thì (x-3) và (x+7) phải cùng dấu
Ta xét 2 trường hợp:
TH1: x-3 > 0 và x+7 > 0
\(\Leftrightarrow\) x > 3 và x > -7
\(\Leftrightarrow x>3\) (1)
TH2: x-3 < 0 và x+7 < 0
\(\Leftrightarrow\) x < 3 và x < -7
\(\Leftrightarrow x<-7\) (2)
Từ (1) và (2) ta suy ra x > 3 và x < -7 thì M > 0
\(M>0\Leftrightarrow\left(x-3\right)\left(x+7\right)>0\)
=>x-3 và x-7 cùng dấu
+)\(\int^{x-3>0}_{x-7>0}\Leftrightarrow\int^{x>3}_{x>7}\Leftrightarrow x>7\left(1\right)\)
+)\(\int^{x-3<0}_{x-7<0}\Leftrightarrow\int^{x<3}_{x<7}\Leftrightarrow x<3\left(2\right)\)
Từ (1) và (2) suy ra x>7 và x<3 thì thỏa mãn M>0