Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề nghe cứ sao sao ý (mk góp ý thui đừng ném gạch đá nha)
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
Đặt \(t=x^2+6x\)
\(A=t\left(t+8\right)+8\)
\(A=t^2+8x+16-8\)
\(A=\left(t+4\right)^2-8\ge-8\left(\forall t\right)\)
\("="\Leftrightarrow t=-4\Leftrightarrow x^2+6x+4=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3-\sqrt{5}\\x=-3+\sqrt{5}\end{cases}}\)
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
ta có:
\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)
\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)
vậy min M=0 khi a=b=c=d
Ta có: \(x+a+b+c=7\Rightarrow a+b+c=7-x\)
\(\Rightarrow\left(a+b+c\right)^2=\left(7-x\right)^2\). Lại có BĐT
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (theo C-S hay Am-Gm đều dc...)
\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow x^2-14x+49\le3\left(13-x^2\right)\left(a^2+b^2+c^2=13-x^2\right)\)
\(\Rightarrow4x^2-14x+10\le0\Rightarrow\left(x-1\right)\left(x-2,5\right)\le0\)
\(\Rightarrow x_{min}\ge1;x_{max}\le2,5\)
3/ \(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)
Để PT trên có nghiệm duy nhất
\(\frac{m}{1}\ne\frac{1}{m}\Rightarrow m^2\ne1\Rightarrow m\ne1\)
\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\x+my=2m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\m^2x-x=3m^2-2m-1\left(#\right)\end{cases}}\)
Từ (#) \(m^2x-x=3m^2-2m-1\)
\(\Leftrightarrow x\left(m^2-1\right)=3m^2-2m-1\)
\(\Rightarrow x=\frac{3m^2-2m-1}{m^2-1}=\frac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{3m+1}{m+1}\)
Có \(mx+y=3m\Leftrightarrow y=3m-mx=3m-\frac{m\left(3m+1\right)}{m+1}=\frac{3m^2+3m-3m^2-m}{m+1}=\frac{2m}{m+1}\)
=> Vậy PT trên có 1 nghiệm \(\left(x;y\right)=\left(\frac{3m+1}{m+1};\frac{2m}{m+1}\right)\)
Và x + y =1
\(\Rightarrow\frac{3m+1}{m+1}+\frac{2m}{m+1}=1\)
\(\Leftrightarrow\frac{5m+1}{m+1}=1\)
\(\Leftrightarrow\frac{5m+1}{m+1}-1=0\)
\(\Leftrightarrow\frac{5m+1-m-1}{m+1}=0\)
\(\Leftrightarrow\frac{4m}{m+1}=0\)
\(\Rightarrow4m=0\Rightarrow m=0\)
Mik không giỏi dạng này nên có j sai ib ạ >:
bn kham khảo ở
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ
vào thống kê của mk nhé
hc tốt