Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với \(x>0,y>0\)thì
\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(1\right)\)
Tương tự :\(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(2\right)\)
Cộng\(\left(1\right)\)với \(\left(2\right)\)được
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{a\left(a^2+b^2+c^2+d^2+ad+bc+ad+cd\right)}{\left(a+b+c+d\right)^2}=4B\)
Cần chứng minh \(B\ge\frac{1}{2}\), bất đẳng thức này tương dương với
\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-b\right)^2\ge0\)(đúng)
Dấu "="xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=c\\b=d\end{cases}}\)
ta đặt \(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+db}\)
Áp dụng bất đẳng thức svác sơ ta có
\(A\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ac+2bd}\)
mặt khác ta có
\(\left[\left(a+c\right)+\left(b+d\right)\right]^2=\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)\)
\(=a^2+c^2+b^2+d^2+2ac+2bd+2\left(ab+ad+bc+cd\right)=a^2+c^2+b^2+d^2+ab+ad+cb+cd+\left(2ac+2bd+ab+ad+cb+cd\right)\)
đến đây cậu dùng cô si ta có
\(a^2+c^2\ge2ac;b^2+d^2\ge2bd\)
cộng vào ta sẽ ra điêu phải chứng minh
cách hơi cùi một chút nhưng chắc là vẫn được
a/b+c+d>a/a+b+c+d
b/a+c+d>b/a+b+c+d
c/a+b+d>c/a+b+c+d
d/a+b+c>d/a+b+c+d
mả a+b+c+d/a+b+c+d=1
=>a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+c> hoac =1
Vay...
Ẹt số xui đưa link cũng bị duyệt
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại
\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
Nhân theo vế 4 BDT trên ta có:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
Hay ta có ĐPCM
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
bài thứ : \(109\left(1\right)\)chuyên đề bất đẳng thức
ta có:
\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)
\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)
vậy min M=0 khi a=b=c=d