K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

3/ \(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Để PT trên có nghiệm duy nhất

\(\frac{m}{1}\ne\frac{1}{m}\Rightarrow m^2\ne1\Rightarrow m\ne1\)

\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\m^2x-x=3m^2-2m-1\left(#\right)\end{cases}}\)

Từ (#) \(m^2x-x=3m^2-2m-1\)

\(\Leftrightarrow x\left(m^2-1\right)=3m^2-2m-1\)

\(\Rightarrow x=\frac{3m^2-2m-1}{m^2-1}=\frac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{3m+1}{m+1}\)

Có \(mx+y=3m\Leftrightarrow y=3m-mx=3m-\frac{m\left(3m+1\right)}{m+1}=\frac{3m^2+3m-3m^2-m}{m+1}=\frac{2m}{m+1}\)

=> Vậy PT trên có 1 nghiệm \(\left(x;y\right)=\left(\frac{3m+1}{m+1};\frac{2m}{m+1}\right)\)

Và x + y =1

\(\Rightarrow\frac{3m+1}{m+1}+\frac{2m}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}-1=0\)

\(\Leftrightarrow\frac{5m+1-m-1}{m+1}=0\)

\(\Leftrightarrow\frac{4m}{m+1}=0\)

\(\Rightarrow4m=0\Rightarrow m=0\)

Mik không giỏi dạng này nên có j sai ib ạ >:

CÂU I:cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)a,rút gọn Pb,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)CÂU II:1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)2,giải hệ phương trình:\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)CÂU III:1,tìm các số nguyên dương x;y;z thỏa mãn \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\in...
Đọc tiếp

CÂU I:

cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)

a,rút gọn P

b,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)

CÂU II:

1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)

2,giải hệ phương trình:

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)

CÂU III:

1,tìm các số nguyên dương x;y;z thỏa mãn \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\in Q\)và x2+y2+z2 là số nguyên tố

2,chứng minh rằng với n là số tự nhiên lớn hơn 1 thì 2n-1 không phải là số chính phương

CÂU IV:

cho tam giác ABC nhọn (AB<AC) nội tiếp (O;r).các đường cao AD;BE;CF cắt nhau tại H.tia EF cắt CB tại P;AP cắt (O;r) tại M(M khác A).

a,CMR:PE.PF=PM.PA

b,CMR:AM vuông góc với HM

c,cho BC cố định,điểm A di động trên cung lớn BC.Xác định vị trí của A để diện tích tam giác BHC lớn nhất

CÂU V:

cho a;b;c là các số thực dương.CMR:

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(\frac{a+b+c}{3}\right)^2\)

3
8 tháng 1 2018

dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*

khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)

\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)

\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)

khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)

vi x^2 +y^2 +z^2 la so nt va x+y+z>1

nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)

giai ra ta co x=y=z=1

Câu !!   .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))

\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)

\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)

\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)

\(< =>x=9\)(thỏa mãn đk)

vậy.....

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :DCâu 1:a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)Câu 2:a) Giải phương...
Đọc tiếp

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :D

Câu 1:

a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)

b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)

Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)

Câu 2:

a) Giải phương trình: \(\frac{\sqrt{3x+1}+\sqrt{x+3}}{x+5+\sqrt{2\left(x^2+1\right)}}=\left(1-x\right)\sqrt{1-x}+\frac{3-3\sqrt{x}}{2}\)

b) Giải hệ phương trình:  \(\hept{\begin{cases}14x^2-21y^2-6x+45y-14=0\\35x^2+28y^2+41x-122y+56=0\end{cases}}\)

Câu 3:

a)  Cho \(x_0;x_1;x_2;.......\) được xác định bởi: \(x_n=\left[\frac{n+1}{\sqrt{2}}\right]-\left[\frac{n}{\sqrt{2}}\right]\).

Hỏi trong 2006 số đầu tiên của dãy có mấy số khác 0

b)  Giải phương trình nghiệm nguyên: \(m^n=n^{m-n}\)

c) Cho phương trình \(x^2-4x+1=0\). Gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Đặt \(a_n=\frac{x_1^n+x_2^n}{2\sqrt{3}}\) với n là số nguyên dương. Chứng minh rằng \(a_n\) là một số nguyên với mọi n

d) Cho bộ số nguyên dương thỏa mãn \(a^2+b^2=c^2\). Chứng minh rằng không thể tồn tại số nguyên dương n sao cho:

\(\left(\frac{c}{a}+\frac{c}{b}\right)^2=n\)

Câu 4:

a) Cho các số dương a,b,c. Chứng minh rằng:

\(\frac{a\left(b+c\right)}{a^2+bc}+\frac{b\left(c+a\right)}{b^2+ca}+\frac{c\left(a+b\right)}{c^2+ab}\ge1+\frac{16abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

b) Cho các số không âm a,b,c thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{b^2-bc+c^2}{a^2+bc}}+\sqrt{\frac{c^2-ca+a^2}{b^2+ca}}+\sqrt{\frac{a^2-ab+b^2}{c^2+ab}}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Câu 5:

1)

Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H, EF cắt BC tại P. Qua D kẻ đường thẳng song song EF cắt AB, AC lần lượt tại Q, R.

a) Chứng minh rằng \(\frac{PB}{PC}=\frac{DB}{DC}\)

b) Gọi X là trung điểm AH. EF cắt AH tại Y. Chứng minh rằng Y là trực tâm tam giác XBC.

2)

Cho E và F lần lượt là các trung điểm của cạnh AD và CD của hình bình hành ABCD sao cho \(\widehat{AEB}=\widehat{AFB}=90^0\), và G là điểm nằm trên BF sao cho EG // AB. Gọi DH, AF lần lượt cắt cạnh BC, BE tại I, H. Chứng minh  rằng \(FI\perp FH\)

Câu 6:

Tìm giá trị nhỏ nhất của a là cạnh hình vuông sao cho có thể đặt 5 tấm bìa hình tròn bán kính 1 trong hình vuông đó mà các tấm bìa không chờm lên nhau.

 GOODLUCK.

WARNING: COMMENT LUNG TUNG SẼ BỊ CÔ QUẢN LÝ CHO "PAY ẶC" nhé !

Thời gian làm bài ( 180 phút ).

16
8 tháng 8 2020

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

8 tháng 8 2020

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

Đề ôn chuyên Toán lần 1 1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm ) b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm ) 2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\) .Tìm m để (d) cắt Ox , Oy tại A và...
Đọc tiếp

Đề ôn chuyên Toán lần 1

1, a, Rút gọn \(P=\left[\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{xy}}{x\sqrt{x}+y\sqrt{y}}\right].\left[\left(\frac{1}{\sqrt{x}-\sqrt{y}}-\frac{3\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}}\right):\frac{x-y}{x+\sqrt{xy}+y}\right]\) (1,5 điểm )

b, Tìm nghiệm nguyên của phương trình \(x^3-y^3=6xy+3\) (1,5 điểm )

2, Trong mặt phẳng tọa độ Oxy cho (d): y = \(\frac{2m-4}{2m+5}+4-2m\left(m\ne-\frac{5}{2}\right)\) .Tìm m để (d) cắt Ox , Oy tại A và B sao cho diện tích tam giác OAB lớn nhất . Tính giá trị lớn nhất đó ( 3 điểm )

3 , a, Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\) ( 3 điểm )

b, Giải hệ phương trình (3 điểm ) \(\left\{{}\begin{matrix}2\sqrt{2x+y}=3-2x-y\\x^2-2xy=y^2+2\end{matrix}\right.\)

4, Cho tam giác ABC nhọn nội tiếp (O) . đường tròn tâm J đường kính BC cắt AB,AC ở E và F. Gọi H và K lần lượt là trực tâm tam giác ABC , AEF .Gọi I là tâm đường tròn ngoại tiếp tam giác AEF

a, Chứng minh A,I,H thẳng hàng ( 2 điểm ) b, Chứng minh KH , EF, IJ đồng quy (2 điểm )

5, Cho a,b,c >0 và abc=1 . Chứng minh \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\le1\) ( 2 điểm )

6, CHO (O) . ĐIỂM A Ở NGOÀI ĐƯỜNG TRÒN VẼ 2 TIẾP TUYẾN AB ,AC VÀ CÁT TUYẾN ADE ( D NẰM GIỮA A VÀ E ) . ĐƯỜNG THẲNG QUA D // AB CẮT BC,BE Ở H VÀ K . CHỨNG MINH DH=HK (2 ĐIỂM )

3
NV
12 tháng 5 2020

5.

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(\Rightarrow VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(x+z\right)+xyz}\)

\(VT\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
12 tháng 5 2020

2. Đề bài bạn viết thiếu thì phải

3. a/

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2+5x+1}=a\\\sqrt{4x^2-4x+4}=b\end{matrix}\right.\)

\(\Rightarrow a-b=a^2-b^2\Leftrightarrow a-b=\left(a-b\right)\left(a+b\right)\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)

- Với \(a=b\Rightarrow9x-3=0\Rightarrow x=...\)

- Với \(a+b=1\Rightarrow\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)

\(\Leftrightarrow\sqrt{4x^2+5x+1}+\sqrt{\left(2x-1\right)^2+3}=1\)

\(VT\ge\sqrt{3}>1\Rightarrow\) pt vô nghiệm

b/ ĐKXĐ: ...

\(2x+y+2\sqrt{2x+y}-3=0\)

\(\Leftrightarrow\left(\sqrt{2x+y}-1\right)\left(\sqrt{2x+y}+3\right)=0\)

\(\Leftrightarrow\sqrt{2x+y}=1\Rightarrow y=1-2x\)

Thay vào pt dưới:

\(x^2-2x\left(1-2x\right)=\left(1-2x\right)^2+2\)

\(\Leftrightarrow...\) bạn tự giải

Bài 1:Giải pt(không dùng máy tính)a)\(x=\sqrt[3]{4x^2-x-6}\)b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)c)\(x^4-x^2+1=-x^2+4x-2\)Bài 2:Cho f(x)=(a-89)(a-90)x+1 Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)So sánh \(f\left(m\right)\)và \(f\left(n\right)\)Bài 3.Cho...
Đọc tiếp

Bài 1:Giải pt(không dùng máy tính)

a)\(x=\sqrt[3]{4x^2-x-6}\)

b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)

c)\(x^4-x^2+1=-x^2+4x-2\)

Bài 2:Cho f(x)=(a-89)(a-90)x+1 

Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)

Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)

      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)

So sánh \(f\left(m\right)\)và \(f\left(n\right)\)

Bài 3.Cho (d):\(y=\left(m^2+1\right)x-3m^2+1\)(m là tham số)

Lấy N(-1;7).Kẻ NH vuông góc với (d) ở H sao cho NH=5 cm.

a)Tìm m

b)Gọi d1;d2;...;d2019 đồng quy với NH tại 1 điểm thuộc đoạn NH.Gọi h1;h2;...;h2019 lần lượt là khoảng cách từ O đến d1;d2;...;d2019.

Tìm max của h1+h2+...+h2019.

Bài 4:Cho tam giác ABC nhọn.AH vuông BC ở H.Phân giác BM của góc ABC (M thuộc AC).Kẻ CE vuông AB ở E.CE cắt BM ở l.AH cắt BM ở F.CMR:BM.BI.BA=BC.BH.BK

Bài 5:Cho tam giác ABC nhọn.CMR:tanA+tanB+tanC=tanA.tanB.tanC.

Bài 6:Cho 2005 điểm thuộc cùng 1 mặt phẳng(không có điểm nào trùng nhau) sao cho trong 3 điểm bất kì ta luôn tìm được 2 điểm có khoảng cách nhỏ hơn 25 cm.CMR tồn tại 1 đường tròn bán kính 25 cm chứa ít nhất 1003 điểm trên

 

0
                                    Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)và cba =\(\left(n-2\right)^2\)2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)3.a) Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và xy>0.Tìm max của...
Đọc tiếp

                                    Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)

1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)cba =\(\left(n-2\right)^2\)

2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)

3.a) Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và xy>0.Tìm max của M=\(\frac{1}{x}+\frac{1}{y}\) 

b)CM:\(P=\frac{3-\sqrt{3+\sqrt{3+....+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< \frac{1}{5}\)(Tử có 2007 dấu căn,Mẫu  có 2006 dấu căn)

4.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và có trực tâm H.Giả sử M là 1 điểm trên cung BC không chứa A

(M khác B,C).Gọi N,P lần lượt là điểm đối xứng của M qua các đường thẳng AB,AC.

a)CM: tứ giác AHCP nội tiếp  

b)CM: N,H,P thẳng hàng 

c)Tìm vị trí của M  để NP lớn nhất

5. Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Gọi D,E,F, lần lượt là giao điểm của các đường thẳng AO vs BC;BO vs AC;CO vs AB.CM AD+BE+CF\(\ge\)\(\frac{9R}{2}\)

0
23 tháng 11 2017

1) x ^ 2013 + y ^ 2014 = 0 . 

23 tháng 11 2017

#Nguyễn Đình Toàn giải rõ ra giúp tớ được khônggg