K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

a , b là bình phương của hai số  nguyên lẻ liên tiếp

=> a có dạng ( 2k - 1 )2 ( k thuộc Z )

=> b có dạng ( 2k + 1 )2 ( k thuộc Z )

Ta phân tích được ab - a - b + 1 = ( a - 1 )( b - 1 )

Thế vào ta được :

[ ( 2k - 1 )2 - 1 ][ ( 2k + 1 )2 - 1 ]

= [ 4k2 - 4k ][ 4k2 + 4k ]

= 16k4 - 16k2 

= 16( k - 1 )k2( k + 1 )

48 = 16.3

Ta có k - 1 , k , k + 1 là ba số liên tiếp => chia hết cho 3 

=> 16( k - 1 )k2( k + 1 ) chia hết cho 48 ( đpcm ) 

10 tháng 3 2021

Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)

\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)

\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp

Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48

Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2

\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)

Ta thấy \(B⋮2;B⋮8\)

(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)

\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)

\(\Rightarrow A⋮48\)

15 tháng 5 2019

Chứng minh gì z bạn?????

23 tháng 11 2016

1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017

= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)

= 1 + 0 + 0 + 0 + .........+ 0

= 1

24 tháng 11 2016

Giả sử a là số nguyên tố chia 12 dư 9

=> a = 12k + 9 ( k \(\in\)N* )

= 3(4k + 3 ) chia hết cho 3

=> a chia hết cho 3. Mà a là số nguyên tố

=> a = 3

Mà 3 chia 12 dư 3

=> Điều giả sử trên là sai !

Vậy không có số nguyên tố nào chia 12 dư 9

13 tháng 6 2019

Ta có ab-a-b+1=(a-1)(b-1)

Vì a,b là bình phương của 2 số lẻ liên tiếp nên ta có \(a=\left(2k+1\right)^2b=\left(2k+3\right)^2\)

\(\Rightarrow ab-a-b+1=2k\left(2k+2\right)^2\left(2k+4\right)\)

\(=16k\left(k+1\right)^2\left(k+2\right)⋮16\)

Vì \(k\left(k+1\right)^2\left(k+2\right)⋮3\)mà (3,16)=1 nên

\(ab-a-b+1⋮3.16=48\)

12 tháng 5 2016

(a+b) :2 là hợp số vì khi 2 số lẻ cộng với nhau đáp số là số chẵn mà số chẵn thì chia hết cho 2

Ví dụ : (1+3):2= 4:2 =2

Suy ra (a+b):2

12 tháng 5 2016

xin lỗi hồ duy hiếu nhưng mình nghĩ lý luận và cách giải của bạn sai đây là 2 số nguyên tố lẻ liên tiếp chứ ko phải 2 số lẻ liên tiếp