Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi i là đại diện cho các số từ 1 đến 2011
ĐKXĐ: \(a_i\ne0\left(i=1,2,3,..,2011\right)\)
Xét \(a_i=1\) Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\)
Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)
Dấu "=" xảy ra khi \(a_i=2\)
Thay vào ta có:
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(\Rightarrow M=1-\frac{1}{2^{2011}}\)
nhìn nó dài nhưng chỉ cần lập luận vài bước thui
Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)
Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và \(x_2\)cùng dấu.
Tương tự ta cũng có:
Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu
.....................................................
Từ (1999) suy ra \(x_{1999}\)và \(x_{2000}\)cùng dấu
Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu
Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .
Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).
Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)
\(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)
...............................................................................................
Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)
Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)
Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:
\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)
Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)
Tóm lại hệ đã cho có 2 nghiệm :
\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)
ĐK:1\(\ge\)x\(\ge\)-1
+) Với x1=x2=...=x2000
Từ (1) suy ra x1=x2=...=x2000 =1/2000 (thay vào (2) thỏa mãn)
+) Với x1<x2<...<x2000 ( trường hợp còn lại chắc cũng giống vậy)
Từ (1) suy ra:
VT>2000.\(\sqrt{1+x_1}\)<=> \(\sqrt{\frac{2001}{2000}}\)>\(\sqrt{1+x_1}\)<=>x1<1/2000(1)
Từ (2) suy ra:
VT<2000.\(\sqrt{1+x_1}\)<=>\(\sqrt{\frac{1999}{2000}}\)<\(\sqrt{1-x_1}\) <=>x1>1/2000(2)
Từ (1) và (2) cho thấy x1<x2<...<x2000 không xảy ra
Vậy: Hệ phương trình có nghiệm duy nhất x1=x2=...=x2000 =1/2000
Cảm ơn nhiều nha Lê Hồ Trọng Tín , cách giải rất hay . Mk có cách này, cũng gần tương tự(p/s nhà mk đã đủ gạch đá r nên k dám nhận nữa đâu ( v ̄▽ ̄) )
Điều kiện \(-1\le x_n\le1\) với mọi \(n=1,2,3,...,2000\)
Khi đó :
\( \left(1\right)\Leftrightarrow2000.2001=\left(\sqrt{1+x_1}+\sqrt{1+x_2}+...+\sqrt{1+x_{2000}}\right)^2\)
\(\le\left(1+1+...+1\right)\left(1+x_1+1+x_2+...+1+x_{2000}\right)\)( bất đẳng thức bunyakovsky)
\(=2000\left(2000+x_1+x_2+...+x_{2000}\right)\)
\(\Leftrightarrow1\le x_1+x_2+...+x_{2000}\)
Khi đó :
\(\left(2\right)\Leftrightarrow2000.1999\le\left(1+1+...+1\right)\left(1+1+...+1-x_1-x_2-...-x_{2000}\right)\)
\(\Leftrightarrow x_1+x_2+...+x_{2000}\le1\)
Do đó \(\hept{\begin{cases}1+x_1=1+x_2=...=1+x_{2000}\\1-x_1=1-x_2=...=1-x_{2000}\\x_1+x_2+...+x_{2000}=1\end{cases}\Leftrightarrow_{ }}x_1=x_2=...=x_{2000}=\frac{1}{2000}.\)
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
1) Áp dụng bất đẳng thức AM-GM :
\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)
1) Anh phương làm lạ zậy?
Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)
Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))
Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)
Vậy P min là 5/2 khi x = 2
\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)
\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)
\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)