K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

dễ vãi luôn ai thấy đúng cho

22 tháng 7 2020

Với n=2

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}\)

\(\Rightarrow x_1-x_2=\frac{1}{x_1}-\frac{1}{x_2}\)

\(\Rightarrow\left(x_1-x_2\right)-\frac{x_1-x_2}{x_1x_2}=0\)

\(\Rightarrow\left(x_1-x_2\right)\left(1-\frac{1}{x_1x_2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x_1-x_2=0\\1-\frac{1}{x_1x_2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x_1=x_2\\x_1x_2=1\end{cases}}}\)

*) n=k

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=...=x_k+\frac{1}{x_k}\)

thì \(x_1=x_2=x_3=...=x_k\)hoặc \(\left|x_1x_2...x_k\right|=0\)

Với n=k+1

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=x_3+\frac{1}{x_3}=...x_{k+1}+\frac{1}{x_1}\)

=> \(x_1+\frac{1}{x_2}=x_2+\frac{1}{x_3}=....=x_k+\frac{1}{x_{k+1}}=x_{k+1}+\frac{1}{x_1}\)

\(\Rightarrow x_{k-1}+\frac{1}{x_k}=x_k+\frac{1}{x_1}=x_{k+1}+\frac{1}{x_1}\)

\(\Rightarrow x_k-x_{k+1}=0\)

\(\Rightarrow x_k=x_{k+1}\)

\(\Rightarrow x_1=x_2=...=x_k=x_{k+1}\)

7 tháng 6 2019

nhìn nó dài nhưng chỉ cần lập luận vài bước thui 

Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)

Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và    \(x_2\)cùng dấu.

Tương tự ta cũng có:

Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu 

.....................................................

Từ (1999) suy ra  \(x_{1999}\)và \(x_{2000}\)cùng dấu

Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu

Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .

Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).

Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)

              \(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)

...............................................................................................

Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)

Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)

Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:

\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)

Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)

Tóm lại hệ đã cho có 2 nghiệm :

\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)

12 tháng 5 2018

Gọi i là đại diện cho các số từ 1 đến 2011

ĐKXĐ:  \(a_i\ne0\left(i=1,2,3,..,2011\right)\)  

Xét \(a_i=1\)  Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\) 

Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)

Dấu "=" xảy ra khi \(a_i=2\) 

Thay vào ta có: 

\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\) 

\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\) 

\(\Rightarrow M=1-\frac{1}{2^{2011}}\)

2 tháng 7 2019

Theo Vi-ét cho 3 số (chứng minh bằng hệ số bất định)

\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_1x_3=-3\\x_1x_2x_3=-1\end{cases}}\)

\(A=\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}\)

   \(=3+\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}+\frac{x_3}{1+x_3}\)

   \(=3+\frac{x_1\left(1+x_2\right)\left(1+x_3\right)+x_2\left(1+x_1\right)\left(1+x_3\right)+x_3\left(1+x_1\right)\left(1+x_2\right)}{\left(1+x_1\right)\left(1+x_2\right)\left(1+x_3\right)}\)

    \(=3+\frac{x_1\left(1+x_2+x_3+x_2x_3\right)+x_2\left(1+x_1+x_3+x_1x_3\right)+x_3\left(1+x_1+x_2+x_1x_2\right)}{\left(1+x_1+x_2+x_1x_2\right)\left(1+x_3\right)}\)

    \(=3+\frac{\left(x_1+x_2+x_3\right)+2\left(x_1x_2+x_2x_3+x_3x_1\right)+3x_1x_2x_3}{1+x_1+x_2+x_3+x_1x_2+x_1x_3+x_2x_3+x_1.x_2.x_3}\)

   \(=3+\frac{0+2.\left(-3\right)+3.\left(-1\right)}{1+0-3-1}\)

   \(=6\)

2 tháng 7 2019

Do x1 là một nghiệm của đa thức f(x) nên ta có: \(x_1^3-3x_1+1=0\)

\(\Leftrightarrow\)\(\left(x_1+1\right)\left(x_1^2-x_1+1\right)=3x_1\)\(\Leftrightarrow\)\(x_1+1=\frac{3x_1}{x_1^2-x_1+1}\)

Có: \(A==\frac{1+2x_1}{1+x_1}+\frac{1+2x_2}{1+x_2}+\frac{1+2x_3}{1+x_3}=3+\left(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}+\frac{x_3}{1+x_3}\right)\)

\(A=3+\left(\frac{x_1\left(x_1^2-x_1+1\right)}{3x_1}+\frac{x_2\left(x^2_2-x_2+1\right)}{3x_2}+\frac{x_3\left(x_3^2-x_3+1\right)}{3x_3}\right)\)

\(A=3+\frac{\left(x_1^2+x_2^2+x_3^2\right)-\left(x_1+x_2+x_3\right)+3}{3}\)

\(A=3+\frac{\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)-\left(x_1+x_2+x_3\right)+3}{3}\)

Đến đây theo Vi-et bậc 3 

\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\end{cases}}\)

3 tháng 5 2019

1) Áp dụng bất đẳng thức AM-GM :

\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)

3 tháng 5 2019

1) Anh phương làm lạ zậy?

Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)

Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))

Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)

Vậy P min là 5/2 khi x = 2

21 tháng 5 2019

ĐK:1\(\ge\)x\(\ge\)-1

+) Với x1=x2=...=x2000 

Từ (1) suy ra x1=x2=...=x2000 =1/2000 (thay vào (2) thỏa mãn)

+) Với x1<x2<...<x2000 ( trường hợp còn lại chắc cũng giống vậy)

Từ (1) suy ra:

VT>2000.\(\sqrt{1+x_1}\)<=> \(\sqrt{\frac{2001}{2000}}\)>\(\sqrt{1+x_1}\)<=>x1<1/2000(1)

Từ (2) suy ra:

VT<2000.\(\sqrt{1+x_1}\)<=>\(\sqrt{\frac{1999}{2000}}\)<\(\sqrt{1-x_1}\) <=>x1>1/2000(2)

Từ (1) và (2) cho thấy x1<x2<...<x2000 không xảy ra 

Vậy: Hệ phương trình có nghiệm duy nhất x1=x2=...=x2000 =1/2000

21 tháng 5 2019

Cảm ơn nhiều nha Lê Hồ Trọng Tín , cách giải rất hay . Mk có cách này, cũng gần tương tự(p/s nhà mk đã đủ gạch đá r nên k dám nhận nữa đâu ( v ̄▽ ̄)   )

Điều kiện \(-1\le x_n\le1\) với mọi \(n=1,2,3,...,2000\)

Khi đó :

\( \left(1\right)\Leftrightarrow2000.2001=\left(\sqrt{1+x_1}+\sqrt{1+x_2}+...+\sqrt{1+x_{2000}}\right)^2\)

                     \(\le\left(1+1+...+1\right)\left(1+x_1+1+x_2+...+1+x_{2000}\right)\)( bất đẳng thức bunyakovsky)

                     \(=2000\left(2000+x_1+x_2+...+x_{2000}\right)\)

           \(\Leftrightarrow1\le x_1+x_2+...+x_{2000}\)

Khi đó :

\(\left(2\right)\Leftrightarrow2000.1999\le\left(1+1+...+1\right)\left(1+1+...+1-x_1-x_2-...-x_{2000}\right)\)

        \(\Leftrightarrow x_1+x_2+...+x_{2000}\le1\)

Do đó \(\hept{\begin{cases}1+x_1=1+x_2=...=1+x_{2000}\\1-x_1=1-x_2=...=1-x_{2000}\\x_1+x_2+...+x_{2000}=1\end{cases}\Leftrightarrow_{ }}x_1=x_2=...=x_{2000}=\frac{1}{2000}.\)

14 tháng 7 2023

\(\sqrt{x_1^2-1^2}+2\sqrt{x^2_2-2^2}+...+100\sqrt{x_{100}^2-100^2}=\dfrac{1}{2}\left(x_1^2+x^2_2+...+x_{100}^2\right)\)

\(\Leftrightarrow2\sqrt{x_1^2-1^2}+4\sqrt{x^2_2-2^2}+...+200\sqrt{x_{100}^2-100^2}=x_1^2+x^2_2+...+x_{100}^2\)

\(\Leftrightarrow x_1^2-1-2\sqrt{x_1^2-1}+1+x^2_2-4-4\sqrt{x^2_2-4}+4+...+x^2_{100}-10000-200\sqrt{x_{100}^2-10000}+10000=0\)

\(\Leftrightarrow\left(\sqrt{x^2_1-1}-1\right)^2+\left(\sqrt{x^2_2-4}-2\right)^2+....+\left(\sqrt{x^2_{100}-10000}-100\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2_1-1}-1=0\\\sqrt{x^2_2-4}-2=0\\....\\\sqrt{x^2_{100}-10000}-100=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\sqrt{1^2+1}=\sqrt{2}\\x_2=\sqrt{2^2+4}=2\sqrt{2}\\....\\x_{100}=\sqrt{100^2+10000}=100\sqrt{2}\end{matrix}\right.\)