Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tự tính nhé dễ mà
b) M + N = 5xyz - 5x2 + 8xy + 5 + 3x2 + 2xyz - 8xy - 7 + y2
= 5xyz + 2xyz + (-5x2 + 3x2) + 8xy - 8xy + y2 + 5 - 7
= 7xyz - 2x2 + y2 - 2
M - N và N - M làm tương tự nhé
M+N=(5xyz-5x\(^2\)+8xy+5) + (3x\(^2\)+2xyz-8xy-7+y\(^2\))
=(5xyz+2xyz)-(5x\(^2\)+3x\(^2\))+(8xy-8xy)+(5-7)
=7xyz-2x\(^2\)-2
Mk lm cho bn tương tự bn lm như z ý k khó đâu
Chúc bạn học tốt!
M+N=(5xyz -5x2 +8xy+5)+(3x2 +2xyz -8xy-7+y2)
=5xyz -5x2 +8xy+5+3x2 +2xyz -8xy-7+y2
=(5xyz-2xyz)+(5x2+3x2)+(8xy-8xy)+(5-7)+y2
=3xyz+8x2+0+(-2)+y2
=3xyz+8x2+(-2)
M-N=(5xyz -5x2 +8xy+5)-(3x2 +2xyz -8xy-7+y2)
=5xyz -5x2 +8xy+5-3x2 +2xyz -8xy-7+y2
=(5xyz-2xyz)-(5x2+3x2)+(8xy-8xy)+(5-7)+y2
=3xyz-8x2+0+(-2)+y2
N-M=(3x2 +2xyz -8xy-7+y2)-(5xyz -5x2 +8xy+5)
=3x2 +2xyz -8xy-7+y2-5xyz -5x2 +8xy+5
=(3x2-5x2)+(2xyz-5xyz)-(8xy-8xy)-(7+5)+y2
=-2x2+(-3xyz)-0-12+y2
* Đa thức thu gọn là đa thức không còn hai hạng tử nào đồng dạng
A = (xy7- xy7) + (x3y5-x3y5)+x8+10
A = x8+10
* M + N
= (5xyz -5x2 + 8xy + 5)+(5x2+2xyz-8xy-7+y2)
= 5xyz - 5x2 +8xy +5+5x2 +2 xyz - 8xy -7 + y2
= ( 5xyz + 2xyz ) + ( -5x2 +5x2) + ( 8xy - 8xy ) + ( 5-7) +y2
= 7xyz - 2 + y2
* M - N
= ( 5xyz - 5x2 +8xy +5) - ( 5x2 + 2xyz - 8xy -7 +y2)
= 5xyz - 5x2 + 8xy + 5 - 5x2 - 2xyz + 8xy + 7 - y2
= ( 5xyz - 2xyz) + ( -5x2 - 5x2) + ( 8xy + 8xy) + ( 5+7) -y2
= 3xyz - 10x2 +16xy +12 -y2
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
A=2M-N-{M-[M-(M-2M)]}
\(=2M-N-\left\{M-M+M-2M\right\}=2M-N+M=3M-N\)
\(=9x^2-3axy^2+24xy-6+3xy^2-4xy^2+8xy-1\)
\(=9x^2-xy^2\left(-3a-1\right)+32xy-7\)
a, P = A + B = (5x\(^2\) - 3xy + 7y\(^2\)) + (6x\(^2\) - 8xy + 9y\(^2\))
= 5x\(^2\) - 3xy + 7y\(^2\) + 6x\(^2\) - 8xy + 9y\(^2\)
= (5x\(^2\) + 6x\(^2\)) + (-3xy - 8xy) + (7y\(^2\) + 9y\(^2\))
= 11x\(^2\) - 11xy + 16y\(^2\)
Q = A - B = (5x\(^2\) - 3xy + 7y\(^2\)) - (6x\(^2\) - 8xy + 9y\(^2\))
= 5x\(^2\) - 3xy + 7y\(^2\) - 6x\(^2\) + 8xy - 9y\(^2\)
= (5x\(^2\) - 6x\(^2\)) + (-3xy + 8xy) + (7y\(^2\) - 9y\(^2\)) = -x\(^2\) + 5xy - 2y\(^2\)
b, M = P - Q = (11x\(^2\) - 11xy + 16y\(^2\)) - (-x \(^2\)+ 5xy - 2y\(^2\))
= 11x\(^2\) - 11xy + 16y\(^2\) + x\(^2\) - 5xy + 2y\(^2\)
= (11x\(^2\) + x\(^2\)) + (-11xy - 5xy) + (16y\(^2\) + 2y\(^2\))
= 12x\(^2\) - 16xy + 18y\(^2\)
Thay x = 1 , y = 2 vào biểu thức M
Ta có : M = 12x\(^2\) - 16xy + 18y\(^2\)
= 12 . 1\(^2\) - 16 . 1 . 2 + 18 .2\(^2\)
= 12 - 32 + 72
= 52
M + N = 2xyz + 3x2y - 4x2 - 5 + xyz + 4x2 - 2x2y - 3
M + N = (2xyz + xyz) + (3x2y - 2x2y) + (-4x2+ 4x2) - 5 - 3
M + N = 3xyz + x2y + 0 - 8
M + N = 3xyz + x2y - 8
M - N = (2xyz + 3x2y - 4x2 - 5) - (xyz + 4x2 - 2x2y - 3)
M - N = 2xyz + 3x2y - 4x2 - 5 - xyz - 4x2 + 3x2y + 3
M - N = (2xyz - xyz) + (3x2y + 3x2y) + (-4x2 - 4x2 ) - 5 + 3
M - N = xyz +6x2y - 8 x 2 - 2
a, Ta có \(M+N=7xyz-2x^2-2+y^2\)
\(M-N=3xyz-8x^2+16xy+12-y^2\)
\(N-M=8x^2-3xyz-16xy-12+y^2\)