Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(M+N=7xyz-2x^2-2+y^2\)
\(M-N=3xyz-8x^2+16xy+12-y^2\)
\(N-M=8x^2-3xyz-16xy-12+y^2\)
a) tự tính nhé dễ mà
b) M + N = 5xyz - 5x2 + 8xy + 5 + 3x2 + 2xyz - 8xy - 7 + y2
= 5xyz + 2xyz + (-5x2 + 3x2) + 8xy - 8xy + y2 + 5 - 7
= 7xyz - 2x2 + y2 - 2
M - N và N - M làm tương tự nhé
M+N=(5xyz-5x\(^2\)+8xy+5) + (3x\(^2\)+2xyz-8xy-7+y\(^2\))
=(5xyz+2xyz)-(5x\(^2\)+3x\(^2\))+(8xy-8xy)+(5-7)
=7xyz-2x\(^2\)-2
Mk lm cho bn tương tự bn lm như z ý k khó đâu
Chúc bạn học tốt!
M+N=(5xyz -5x2 +8xy+5)+(3x2 +2xyz -8xy-7+y2)
=5xyz -5x2 +8xy+5+3x2 +2xyz -8xy-7+y2
=(5xyz-2xyz)+(5x2+3x2)+(8xy-8xy)+(5-7)+y2
=3xyz+8x2+0+(-2)+y2
=3xyz+8x2+(-2)
M-N=(5xyz -5x2 +8xy+5)-(3x2 +2xyz -8xy-7+y2)
=5xyz -5x2 +8xy+5-3x2 +2xyz -8xy-7+y2
=(5xyz-2xyz)-(5x2+3x2)+(8xy-8xy)+(5-7)+y2
=3xyz-8x2+0+(-2)+y2
N-M=(3x2 +2xyz -8xy-7+y2)-(5xyz -5x2 +8xy+5)
=3x2 +2xyz -8xy-7+y2-5xyz -5x2 +8xy+5
=(3x2-5x2)+(2xyz-5xyz)-(8xy-8xy)-(7+5)+y2
=-2x2+(-3xyz)-0-12+y2
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)
b: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c: Vì \(2x^2+3>0\forall x\)
nên M(x) vô nghiệm
a, \(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=-x^3+x^2-x+1\)
b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )
vì 2x^2 >= 0 ; 2x^2 + 3 > 0
Vậy giả sử là sai hay đa thức M(x) ko có nghiệm
\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)
`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`
`= (2x^3 -x^3)+x^2+(-x+3x) +5`
`= x^3 +x^2 + 2x+5`
`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`
`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`
`= -x^3 -x^2+3x+10`
`b,M(x)=P(x)+Q(x)`
`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5+(-x^3) -x^2+3x+10`
`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`
`= 5x+15`
`N(x)=P(x)-Q(x)`
`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`
`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`
`=2x^2 -x-5`
* Đa thức thu gọn là đa thức không còn hai hạng tử nào đồng dạng
A = (xy7- xy7) + (x3y5-x3y5)+x8+10
A = x8+10
* M + N
= (5xyz -5x2 + 8xy + 5)+(5x2+2xyz-8xy-7+y2)
= 5xyz - 5x2 +8xy +5+5x2 +2 xyz - 8xy -7 + y2
= ( 5xyz + 2xyz ) + ( -5x2 +5x2) + ( 8xy - 8xy ) + ( 5-7) +y2
= 7xyz - 2 + y2
* M - N
= ( 5xyz - 5x2 +8xy +5) - ( 5x2 + 2xyz - 8xy -7 +y2)
= 5xyz - 5x2 + 8xy + 5 - 5x2 - 2xyz + 8xy + 7 - y2
= ( 5xyz - 2xyz) + ( -5x2 - 5x2) + ( 8xy + 8xy) + ( 5+7) -y2
= 3xyz - 10x2 +16xy +12 -y2
Thanks