K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

Các bạn đặt câu hỏi về đề Toán lớp 4 đi

TT
11 tháng 12 2023

Cậu trả lời đi, sáng mai tớ phải nộp rồi. Nhanh nhé, tớ tìm cho

vì số chính phương = bình phương 1 số tự nhiên.

mà bình phương các số tự nhiên  như ( 0 , 1 , 2 , .... , 9) ta lại được các số chính phương   : 0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81  và các số trên ko có tận cùng  2 , 3 , 7 , 8

17 tháng 7 2017

vì số chính phương = bình phương 1 số tự nhiên.

mà bình phương các số tự nhiên  như ( 0 , 1 , 2 , .... , 9) ta lại được các số chính phương   : 0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81  và các số trên ko có tận cùng  2 , 3 , 7 , 8

14 tháng 3 2020

có nha bạn !

14 tháng 3 2020

nhưng chỉ là có thể thôi

15 tháng 6 2017

Ta có: A = 1 + 31 + 32 + 33 + ... + 330

=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)

=> 3A = 3 + 32 + 33 + 34 + ... + 331

=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)

=> 2A = 331 - 1

=> A = \(\frac{3^{31}-1}{2}\)\(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)

Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.

15 tháng 6 2017

\(A=1+3+3^2+3^3+....+3^{30}\)

\(3A=3+3^2+3^3+3^4+.....+3^{31}\)

\(3A-A=3^{31}-1\)

\(A=\frac{3^{31}-1}{2}\)

Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)

\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)

Do đó A có chữ số tận cùng là 3

Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)

28 tháng 6 2018

. là nhân đó nha

28 tháng 6 2018

Ta có : 

\(A=2016.2016.....2016=2016^{2015}\) 

\(B=2017.2017.....2017\)

\(B=2017^{2016}\)

\(B=\left(2016+1\right)^{2016}\)

\(B=2016^{2016}+4032+1\)

\(\Rightarrow\)\(A+B=2016^{2015}+2016^{2016}+4032+1\)

\(\Rightarrow\)\(A+B=2016^{2015}.2017+4033\)

Lại có : 

\(2016^{2015}\) luôn có chữ số tận cùng là \(6\)

\(\Rightarrow\)\(2016^{2015}.2017\) có chữ số tận cùng là \(2\)

\(\Rightarrow\)\(2016^{2015}.2017+4033\) có chữ số tận cùng là \(5\)

Do đó : 

\(A+B\) chia hết cho \(5\)

Vậy \(A+B\) chia hết cho \(5\)

Chúc bạn học tốt ~