Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì số chính phương = bình phương 1 số tự nhiên.
mà bình phương các số tự nhiên như ( 0 , 1 , 2 , .... , 9) ta lại được các số chính phương : 0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 và các số trên ko có tận cùng 2 , 3 , 7 , 8
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)
Ta có :
\(A=2016.2016.....2016=2016^{2015}\)
\(B=2017.2017.....2017\)
\(B=2017^{2016}\)
\(B=\left(2016+1\right)^{2016}\)
\(B=2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}+2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}.2017+4033\)
Lại có :
\(2016^{2015}\) luôn có chữ số tận cùng là \(6\)
\(\Rightarrow\)\(2016^{2015}.2017\) có chữ số tận cùng là \(2\)
\(\Rightarrow\)\(2016^{2015}.2017+4033\) có chữ số tận cùng là \(5\)
Do đó :
\(A+B\) chia hết cho \(5\)
Vậy \(A+B\) chia hết cho \(5\)
Chúc bạn học tốt ~
hôm nay dc nghi tet ma ban
Học thêm nha bạn