Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x^2-5x-9< 0\) \(\Leftrightarrow-1< x< \dfrac{9}{4}\)
⇒ Số nghiệm nguyên của BPT là: 3
Đáp án: B
\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)
\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)
để phương trình \(5x^2-x+m\le0\) vô nghiệm thì \(5x^2-x+m>0\forall x\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta< 0\\a>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2-5\left(m\right)>0\\5>0\left(luônđúng\right)\end{matrix}\right.\) \(\Leftrightarrow1-5m>0\Leftrightarrow m< \dfrac{1}{5}\)
vậy \(m< \dfrac{1}{5}\) thì phương trình \(5x^2-x+m\le0\) vô nghiệm
a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
2x² + 5x - 12 = 0
∆ = 25 + 4.2.12 = 121
x₁ = (-5 + 11)/4 = 3/2
x₂ = (-5 - 11)/4 = -4
Bảng xét dấu
x -∞ -4 3/2 +∞
2x²+5x-12 + - +
Các nghiệm nguyên của bpt là: -4; -3; -2; -1; 0; 1
Vậy bpt đã cho có 6 nghiệm nguyên