K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trường hợp 1: m=-1

Bất phương trình sẽ là \(0x^2-2\cdot0\cdot x+4>=0\)(luôn đúng)

Trường hợp 2: m<>-1

\(\text{Δ}=\left(2m+2\right)^2-4\cdot4\cdot\left(m+1\right)\)

\(=4m^2+8m+4-16m-16\)

\(=4m^2-8m-12\)

\(=4\left(m^2-2m-3\right)\)

Để bất phương trình có nghiệm đúng với mọi x thực thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+1\right)< 0\\\left(m+1\right)>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< m< 3\\m>=-1\end{matrix}\right.\Leftrightarrow-1< m< 3\)

Vậy: -1<=m<3

13 tháng 2 2022

TH1: m+1=0 <=> m=-1

Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại

TH2: m+1 khác 0 <=> m khác -1

Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x 

<=> {a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0

<=>{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3

Vậy m>3 thì...

13 tháng 2 2022

TH1: m+1=0 <=> m=-1

Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại

TH2: m+1 khác 0 <=> m khác -1

Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x 

<=> \(\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-\left(m+1\right)\right]^2-4\left(m+1\right)\le0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}m>-1\\m^2-2m-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m>3\)

Vậy m>3 thì...

13 tháng 2 2022

ukm!!!!!!!

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

NV
21 tháng 3 2022

BPT đã cho vô nghiệm khi:

\(-x^2+x-m\le0\) nghiệm đúng với mọi x

\(\Leftrightarrow\Delta'=1-4m\le0\)

\(\Rightarrow m\ge\dfrac{1}{4}\)

21 tháng 2 2021

\(x^2-x+m\le0\)

\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)

Bảng biến thiên:

Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)

21 tháng 2 2021

đáp án :m>1/4

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

\(x^2-2\left(m-1\right)x+4m+8< 0\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(4m+8\right)\)

\(=4m^2-4m+1-16m+32\)

\(=4m^2-20m+33\)

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m^2-20m+33< =0\\1>0\left(đúng\right)\end{matrix}\right.\)

=>\(4m^2-20m+33< =0\)

=>\(\left(2m-5\right)^2+8< =0\)(vô lý)

=>\(m\in\varnothing\)

7 tháng 6 2018

Chọn D

Hệ bất phương trình vô nghiệm  khi và chỉ khi m - 1  3 hay m  4