K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu 1: cho tam giác abc vuông tại a . kẻ đường cao ah . gọi de là hình chiếu của h trên ab, ac và m , n theo thứ tự là tđ của các đoạn thẳng bh , cha)ah=deb)mden là hình thang vuôngc)gọi p là giao đường thẳng de với đường cao ah và q là tđ của đoạn thẳng mn . cm pq vuông ded) p là trực tâm tam giác abncâu 2:cho tam giác abc vuông tại a , đường cao ah . kẻ he vuông ab , hf vuông aca)ef=ahb) m , n lần lượt là...
Đọc tiếp

câu 1: cho tam giác abc vuông tại a . kẻ đường cao ah . gọi de là hình chiếu của h trên ab, ac và m , n theo thứ tự là tđ của các đoạn thẳng bh , ch

a)ah=de

b)mden là hình thang vuông

c)gọi p là giao đường thẳng de với đường cao ah và q là tđ của đoạn thẳng mn . cm pq vuông de

d) p là trực tâm tam giác abn

câu 2:cho tam giác abc vuông tại a , đường cao ah . kẻ he vuông ab , hf vuông ac

a)ef=ah

b) m , n lần lượt là tđ hb , hc . cm Smefn=\(\frac{1}{2}\)Sabc

c) mnfe là hình gì ?

câu 3: cho tam giác abc vuông tại a , ab=6cm , ac=8cm ,đường cao ah. kẻ he vuông ab , hf vuông ac

a)ef=ah

b) tính ah

c)m , n theo thứ tự là tđ của các đoạn thẳng hb , hc. mnfe là hình gì ?

bài 4:cho tam giác abc vuông tại a, đường cao ah. gọi m là điểm nằm giữa b và c . kẻ mn vuông ab, mp vuông ac

a) cm ah.bc=ab.ac

b)anmp là hình gì ?

c)tính số đo góc nhp

d)tìm vị trí điểm m trên bc để np có độ dài ngắn nhất

bài5:cho tam giác abc vuông tại a, đường cao ah. d là tđ ac, e đối xứng với h qua d

a) ahce là hình chữ nhật

b)kẻ ai // he(i thuộc bc).cm aehi là hbh
c)trên tia đối ha lấy k sao cho ha=hk.cm caik là hình thoi

d) tam giác abc cần đk gì để caik là hình vuông ? khi đó ahce là hình gì ?

 

 

0
7 tháng 11 2019

a) ta có : tam giác ABC vuông tại A

=> BAC = 90 độ (1)

 có : MD vuông góc AB

=> MDA = 90 độ (2)

Ta có : ME vuông góc AC

=> MEA = 90 độ (3)

Từ (1)(2)(3) => ADME là hình chữ nhật

Hiểu rõ về BTS chỉ có thể là Army phải không chị Bangtan?Chỉ cần nhìn avatar đoán ra chủ nick là con gái vì số fan girl nhiều hơn fan boy.

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

28 tháng 11 2019

76276712

21 tháng 11 2019

Bài 1

a/ Ta có \(AM=\frac{AB}{2}=\frac{CD}{2}\) và AM//CD => AM là đường trung bình của tg CDP

=> MP=MC mà MA=MB (đề bài) => APBC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

b/ 

\(S_{APB}=\frac{AB.AP}{2};S_{ABC}=\frac{AB.BC}{2};S_{ACD}=\frac{CD.AD}{2}\) mà AP=AD=BC =CD \(\Rightarrow S_{APB}=S_{ACD}=S_{ABC}\)

Ta có \(S_{BCDP}=S_{APB}+S_{ACD}+S_{ABC}=3S_{ABC}\Rightarrow2S_{BCDP}=6S_{ABC}\)

Ta có \(S_{APBC}=S_{APB}+S_{ABC}=2S_{ABC}\Rightarrow3S_{APBC}=6S_{ABC}\)

\(\Rightarrow2S_{BCDP}=3S_{APBC}\left(dpcm\right)\)

c/ 

Xét tgv BCM và tgv CDN có

CN=BM (đều bằng 1/2 cạnh góc vuông

CD=BC (cạnh góc vuông)

=> tg BCM=tg CDN (trường hợp 2 cạnh góc v bằng nhau)

\(\Rightarrow\widehat{BCM}=\widehat{CDM}\) Mà \(\widehat{CDN}+\widehat{CND}=90\Rightarrow\widehat{BCM}+\widehat{CND}=90\Rightarrow\widehat{CQN}=90\)

Ta có AP=AD ( chứng minh trên) => AQ là trung tuyến thuộc cạnh huyền của tgv DQP => AQ=PD/2=AD=AB (dpcm)

Bài 2:

Ta có \(x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+3\ge3\Rightarrow x^2-4x+7>0\forall x\)