K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

\(E=\frac{3}{-x^2+2x+4}\)

\(E=\frac{-3}{\left(x^2-2x+1\right)-5}\)

\(E=\frac{-3}{\left(x-1\right)^2-5}\ge\frac{-3}{-5}=\frac{3}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(x=1\)

Vậy GTNN của \(E\) là \(\frac{3}{5}\) khi \(x=1\)

Chúc bạn học tốt ~ 

NV
16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/815591.html

Bạn tham khảo

17 tháng 2 2020

mơn bạn nhìu!!!!!!!!!!!!!!!

21 tháng 7 2019

\(C=5x^2-7x+4\\ =5\left(x^2-\frac{7}{5}x\right)+4\\ =5\left(x^2-2\cdot x\cdot\frac{7}{10}+\left(\frac{7}{10}\right)^2\right)+\frac{31}{20}\\ =\left(x-\frac{7}{10}\right)^2+\frac{31}{10}\ge\frac{31}{10}\forall x\)

Vậy Min C = \(\frac{31}{10}\)khi \(x=\frac{7}{10}\)

\(D=x^2+y^2-2x-4y-6\\ =\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\)

Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow D=\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\forall x,y\)

Vậy min D = -11 khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

21 tháng 7 2019

\(C=5x^2-7x+4\\ =5x^2-7x+\frac{49}{20}+\frac{31}{20}\\ =\left(x\sqrt{5}-\frac{7\sqrt{5}}{10}\right)^2+\frac{31}{20}\ge\frac{31}{20}\left(\forall x\in R\right)\)

Đẳng thức xảy ra \(\Leftrightarrow x\sqrt{5}-\frac{7\sqrt{5}}{10}=0\Leftrightarrow\sqrt{5}\left(x-\frac{7}{10}\right)=0\Leftrightarrow x=\frac{7}{10}\)

\(D=x^2+y^2-2x-4y-6=0\\ =x^2-2x+1+y^2-4y+4-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\left(\forall x,y\in R\right)\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(minC=\frac{31}{20}\), đạt được khi \(x=\frac{7}{10}\); và \(minD=-11\), đạt được khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Chúc bạn học tốt nhaok.

22 tháng 10 2017

từ đề = |x+1| + |x-1| (1)

+/ nếu x >1 thì x-1>0 và x+1>0 

suy ra (1)=2x mà x>1 nên (1) > 2 

+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0 

suy ra (1)=2

+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2

suy ra (1)=-2x

mà x<1 nên (1)>2

 vậy MIN=2 <=> -1<=x<=1

22 tháng 10 2017

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)

Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)

6 tháng 10 2021

\(a=\dfrac{a+1}{a-2020}\)

\(=\dfrac{a-2020}{a-2020}+\dfrac{2021}{a-2020}\)

\(=1+\dfrac{2021}{a-2020}\) Vì a>2020

\(1+\dfrac{2021}{a-2020}\text{≥}2\)

Min a=2 ⇔\(\dfrac{2021}{a-2020}=1\)

                ⇔\(a-2020=2021\)

                ⇔\(a=4041\)